

Lecture Notes in Artificial Intelligence 4908
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Mehdi Dastani Amal El Fallah Seghrouchni
Alessandro Ricci Michael Winikoff (Eds.)

Programming
Multi-Agent Systems

5th International Workshop, ProMAS 2007
Honolulu, HI, USA, May 15, 2007
Revised and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Mehdi Dastani
Utrecht University, The Netherlands
E-mail: mehdi@cs.uu.nl

Amal El Fallah Seghrouchni
University of Paris VI, France
E-mail: amal.elfallah@lip6.fr

Alessandro Ricci
Università di Bologna, Cesena, Italy
E-mail: a.ricci@unibo.it

Michael Winikoff
RMIT University, Melbourne, Australia
E-mail: michael.winikoff@rmit.edu.au

Library of Congress Control Number: 2008924793

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, F.3, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-79042-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79042-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12253067 06/3180 5 4 3 2 1 0

Preface

These are the post-proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS 2007), the fifth of a series of workshops that is
attracting increasing attention from researchers and practitioners in multi-agent
systems.

Multi-agent systems (MAS) constitute a promising software development
paradigm for complex and distributed applications. The aim of the ProMAS
workshop series is to promote and contribute to the establishment of MAS as
a mainstream approach to the development of industrial-strength software. In
particular, ProMAS aims to address the technologies that are required for im-
plementing multi-agent systems designs or specifications effectively. We promote
the discussion and exchange of ideas on principles, concepts, requirements, tech-
niques, and tools that are essential for programming approaches and technologies
specifically devised for MAS.

The idea of organizing the first workshop of the series was first discussed dur-
ing the Dagstuhl seminar “Programming Multi-Agent Systems Based on Logic”,
where the focus was on logic-based approaches. It was felt that the scope should
be broadened beyond logic-based approaches, thus giving the current scope and
aims of ProMAS.

After four very successful editions of the ProMAS workshop series, which
took place at AAMAS 2003 (Melbourne, Australia), AAMAS 2004 (New York,
USA), AAMAS 2005 (Utrecht, The Netherlands), and AAMAS 2006 (Hakodate,
Japan), the fifth edition took place on May 14 in Honolulu, Hawai’i, in con-
junction with AAMAS 2007, the main international conference on autonomous
agents and MAS. ProMAS 2007 received 17 submissions. These were reviewed
by members of the Program Committee, and 11 papers were accepted.

At the workshop, in addition to the papers being presented, Jörg Müller gave
an invited talk on business applications of agent technologies. Subsequently, Jörg
was invited to prepare an invited paper for the post-proceedings. The resulting
paper (written with Bernhard Bauer and Stephan Roser) examines the trade-offs
involved in selecting an architecture for business processmodelling and enactment.

The proceedings also contain an invited paper by Ralph Rönnquist describing
a new agent platform, GORITE, which we hope will be of interest to the ProMAS
community. GORITE (“GOal oRIented TEams”) is a Java-based framework that
provides facilities for implementing agent teams and goals. The aim of GORITE
is to offer the team programming view and concepts dressed up in a standard
Java solution, and thereby make the benefits of the paradigm accessible to a
wider audience.

All but one of the 11 regular papers in these proceedings fall into one of
three themes. The first paper by Keiser et al. is the exception. It looks at adding
accounting features to the JIAC agent platform, motivated by the maxim that

VI Preface

“objects do it for free, agents do it for money.” The three themes that the remain-
ing papers fall into are “Environment and Interaction”, “Agent Programming
Languages”, and “Analysis of MAS”.

Environment and Interaction

The paper by Aldewereld et al. develops a method for deriving interaction proto-
cols from norms using landmarks. Their procedure can be used to systematically
derive concrete protocols that can be used by agents in norm-governed electronic
institutions, and ensure that the norms of the institution will be fulfilled.

The paper by Santos et al. presents a way of interoperating Bayesian network
knowledge amongst agents using an ontology-based approach.

The paper by Ricci et al. builds on their A&A (Agents and Artifacts) principles
which argue that artifacts play a critical role in activities. The paper presents
the CARTAGO platform and shows how it can be integrated with existing MAS
programming frameworks, using the Jason platform as an example.

Agent Programming Languages

The paper by Dastani and Meyer presents the agent-oriented programming lan-
guage 2APL (“A Practical Agent Programming Language”), a successor to the
well-known 3APL language. The syntax and semantics of 2APL are presented.

The paper by Dennis et al. presents an intermediate language for BDI-style
programming languages. The intermediate language aims to be a low-level “lin-
gua franca” for existing high-level languages, ultimately enabling a generic model
checker to be developed. The semantics of the language are presented, focussing
on plan processing and intentions.

The paper by Novák and Dix proposes a mechanism for modularity which
works by extending the syntax of the language using the concept of a mental
state transformer. Formal semantics and a concrete syntax are presented.

The paper by Hindriks also tackles the issue of modularity in agent pro-
gramming languages. Hindriks’ solution, developed in the context of the GOAL
language, views modules as policy-based intentions which can be activated when
their context condition is true. Modules also allow the agent to “focus” its
attention, thus reducing the inherent non-determinism in GOAL and similar
languages.

Analysis of MAS

The paper by Mermet et al. proposes the use of goal decomposition trees (GDTs)
to model agent behavior, and shows how properties of GDTs can be proven.

The paper by Vigueras and Bot́ıa proposes the use of causality graphs to
visualize the behavior of a multi-agent system. They argue that causality graphs
make the behavior of an MAS easier to follow than simple sequence diagrams,
and give an algorithm for building causality graphs.

Preface VII

The paper by Furbach et al. shows how a multi-agent system can be modelled
using a combination of UML state-charts and hybrid automata. The proposed
modelling notation is suitable for real-time systems with continuous variables.
By exploiting existing model checkers for hybrid automata these systems can be
model checked.

Agent Contest 2007

The proceedings also contain papers relating to Agent Contest 2007
(http://cig.in.tu-clausthal.de/AgentContest2007/). While the first two editions
of this contest were organized within the Computational Logic in Multi-Agent
Systems workshop series (CLIMA 2005 and CLIMA 2006), the organizers (Mehdi
Dastani, Jürgen Dix and Peter Novák) felt that ProMAS is an ideal environment
for such a contest. For this edition the actual contest took place in April/May
with the results announced at ProMAS 2007. The winner of the ProMAS 2007
Agent Contest was the JIAC IV team from the DAI-Labor, Technische Univer-
sität Berlin, Germany. The second team was the microJIAC team, from the same
institute, followed by the Jason team. These proceedings contain a detailed re-
port about the contest by the contest organizers, as well as five papers describing
the MAS that were accepted for Agent Contest 2007.

One of the driving motivations behind the ProMAS workshop series (and all
associated activities) was the observation that the area of autonomous agents
and MAS has grown into a promising technology offering sensible alternatives
for the design of distributed, intelligent systems. However, the success of MAS
development can only be guaranteed if we can bridge the gap from analysis and
design to effective implementation. This, in turn, requires the development of
fully fledged and general purpose programming technology so that the concepts
and techniques of MAS can be easily and directly implemented. Only by advanc-
ing our understanding of the key issues in the development of large-scale MAS
will we see a paradigm shift, with MAS techniques becoming, as the AAMAS
community predicted, the predominant approach to the development of complex
distributed systems that are able to operate in dynamic and unpredictable envi-
ronments. We hope that the work described in this volume takes us a step closer
to this goal.

Finally, we would like to thank all the authors, the invited speaker, the author
of the second invited paper, the Program Committee members, and additional
reviewers for their outstanding contribution to the success of ProMAS 2007.
We are particularly grateful to the AAMAS 2007 organizers for their technical
support and for hosting ProMAS 2007.

November 2007 Mehdi Dastani
Amal El Fallah Seghrouchni

Alessandro Ricci
Michael Winikoff

Organization

Organizing Committee

Mehdi Dastani, Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
Alessandro Ricci Università di Bologna a Cesena, Italy
Michael Winikoff RMIT University, Australia

Steering Committee

Rafael H. Bordini, University of Durham, UK
Mehdi Dastani, Utrecht University, The Netherlands
Jürgen Dix Clausthal University of Technology, Germany
Amal El Fallah Seghrouchni University of Paris VI, France

Program Committee

Matteo Baldoni Università degli Studi di Torino, Italy
Juan A. Bot́ıa Blaya Universidad de Murcia, Spain
Lars Braubach University of Hamburg, Germany
Jean-Pierre Briot University of Paris 6, France
Keith Clark Imperial College, UK
Rem Collier University College Dublin, Ireland
Yves Demazeau Institut IMAG - Grenoble, France
Frank Dignum Utrecht University, The Netherlands
Michael Fisher University of Liverpool, UK
Jorge Gómez-Sanz Universidad Complutense de Madrid, Spain
Vladimir Gorodetsky St. Petersburg Institute for Informatics and

Automation, Russia
Shinichi Honiden NII, Tokyo, Japan
Jomi Hübner Universidade Regional de Blumenau, Brazil
João Leite Universidade Nova de Lisboa, Portugal
Jiming Liu Hong Kong Baptist University, Hong Kong
John-Jules Meyer Utrecht University, The Netherlands
Toyoaki Nishida Kyoto University, Japan
Andrea Omicini Università di Bologna a Cesena, Italy
Juan Pavon Universidad Complutense de Madrid, Spain
Alexander Pokahr University of Hamburg, Germany
Chris Reed Calico Jack Ltd., UK
Birna van Riemsdijk Ludwig Maximilians University, Germany

X Organization

Sebastian Sardina RMIT University, Australia
Nathan Schurr University of Southern California, USA
Paolo Torroni University of Bologna, Italy

Additional Reviewers

Koen Hindriks, Marc-Philippe Huget

Table of Contents

Invited Papers

Decentralized Business Process Modeling and Enactment: ICT
Architecture Topologies and Decision Methods . 1

Bernhard Bauer, Jörg P. Müller, and Stephan Roser

The Goal Oriented Teams (GORITE) Framework . 27
Ralph Rönnquist

Regular Papers

Agents Do It for Money - Accounting Features in Agents 42
Jan Keiser, Benjamin Hirsch, and Sahin Albayrak

From Norms to Interaction Patterns: Deriving Protocols for Agent
Institutions . 57

Huib Aldewereld, Frank Dignum, and John-Jules Ch. Meyer

Interoperability for Bayesian Agents in the Semantic Web 73
Elder Rizzon Santos, Moser Silva Fagundes, and Rosa Maria Vicari

The A&A Programming Model and Technology for Developing Agent
Environments in MAS . 89

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

A Practical Agent Programming Language . 107
Mehdi Dastani and John-Jules Ch. Meyer

A Common Semantic Basis for BDI Languages . 124
Louise A. Dennis, Berndt Farwer, Rafael H. Bordini,
Michael Fisher, and Michael Wooldridge

Adding Structure to Agent Programming Languages 140
Peter Novák and Jürgen Dix

Modules as Policy-Based Intentions: Modular Agent Programming in
GOAL . 156

Koen Hindriks

Specifying and Verifying a MAS: The Robots on Mars Case Study 172
Bruno Mermet, Gaële Simon, Bruno Zanuttini, and Arnaud Saval

Tracking Causality by Visualization of Multi-Agent Interactions Using
Causality Graphs . 190

Guillermo Vigueras and Juan A. Botia

XII Table of Contents

Hybrid Multiagent Systems with Timed Synchronization – Specification
and Model Checking . 205

Ulrich Furbach, Jan Murray, Falk Schmidsberger, and
Frieder Stolzenburg

Agent Contest Competition

Agent Contest Competition: 3rd Edition . 221
Mehdi Dastani, Jürgen Dix, and Peter Novák

Developing a Team of Gold Miners Using Jason . 241
Jomi F. Hübner and Rafael H. Bordini

Going for Gold with 2APL . 246
L. Astefanoaei, C.P. Mol, M.P. Sindlar, and N.A.M. Tinnemeier

Collecting Gold: MicroJIAC Agents in Multi-Agent Programming
Contest . 251

Erdene-Ochir Tuguldur and Marcel Patzlaff

JIAC IV in Multi-Agent Programming Contest 2007 256
Axel Hessler, Benjamin Hirsch, and Jan Keiser

An Agent Team Based on FLUX for the ProMAS Contest 2007 261
Stephan Schiffel, Michael Thielscher, and Doan Thu Trang

Author Index . 267

Decentralized Business Process Modeling and

Enactment: ICT Architecture Topologies and
Decision Methods

Bernhard Bauer1, Jörg P. Müller2, and Stephan Roser1

1 Programming Distributed Systems Lab
University of Augsburg

Universitätsstrasse 14, D-86135 Augsburg, Germany
{bauer,roser}@ds-lab.org
2 Department of Informatics

Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany

joerg.mueller@tu-clausthal.de

Abstract. Multiagent systems have been proposed in the literature as a
suitable architectural and implementation approach for cross-enterprise
collaboration, due to their support for decentral decision-making and
peer-to-peer coordination, loosely coupled interaction, modeling support
for the notion of electronic institutions, and built-in adaptability mech-
anisms. While we agree with this general view, we argue that different
application domain and different market constellations require different
types of architecture. In this paper we look at the specific problem of
selecting an information and communication technology (ICT) architec-
ture for cross-enterprise business process (CBP) design and enactment.
Therefore we identify three important architectural patterns for CBP en-
actment. We then propose a decision method for architecture selection
based on the analytic hierarchy process (AHP) approach. Finally we il-
lustrate the method by applying it to two application scenarios with
differing characteristics. Robustness of the decision method is analyzed
by performing a sensitivity analysis.

1 Introduction

Under the pressure of globalization, companies are urged to constantly adapt
to new market situations and and competitors innovations. Focusing on their
core business and core competencies, they engage in cross-enterprise business
processes (CBPs) with new partners all over the world in ever changing con-
stellations. Companies are organized into global networks and outsource those
activities that can be performed quicker, more effectively, or at lower cost, by
others.

These developments create new challenges for enterprise information and
communication technology (ICT), requiring ICT systems to support constantly
changing enterprise collaboration relationships and to create application systems

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 1–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 B. Bauer, J.P. Müller, and S. Roser

that support or automate business process enactment starting from business level
descriptions and models of CBPs.

Multiagent systems [18] have been proposed in the literature as a suitable
architectural and implementation approach for cross-enterprise collaboration
[19,20], due to their support for decentral decision-making and peer-to-peer co-
ordination, loosely coupled coordination, modeling support for the notion of
electronic institutions [14], and built-in adaptability. However, while we agree
that the distributed and sometimes decentral topologies require some kind of
multiagent organization principles, we argue that different application domains
and different market constellations require different types of system architecture.

Let us look at the following example of collaborative product development
in the automotive sector (see [35]). The scenario (see Figure 1) describes the
interaction between an automotive Original Equipment Manufacturer (OEM)
and its supplier network consisting of multiple tiers of suppliers, during the
process of Strategic Sourcing. Strategic Sourcing is an early step within Coop-
erative Product Development, where OEMs set up strategic partnerships with
the larger (so-called first-tier) suppliers with the aim of producing specific sub-
systems (e.g., powertrain, safety electronics) of a planned car series. In the use
case considered for this paper, the OEM shares Requests for Quotations with
its first-tier suppliers (1). First-tier suppliers serve as gateways to the supplier
network; specifications are reviewed and conditions negotiated with second-tier
suppliers (2), and feasibility of the requests are checked. First-tier suppliers then
issue quotes or suggest changes to the OEM (3). This cycle is repeated until all
parties agree on a feasible specification. Finally, first-tier suppliers submit quotes
to the OEM.

Figure 1 gives a high-level (business-level) model of the cross-enterprise busi-
ness processes involved in this scenario. Trying to map this model into an exe-
cutable ICT model, several non-trivial questions need to be answered regarding
the ICT architecture. In particular, the question that we address in this paper is
the following: What is the most appropriate architectural choice to model the in-
teractions between the OEM and the 1st tier suppliers? A decentral, peer-to-peer

Fig. 1. Application example: Collaborative product development

Decentralized Business Process Modeling and Enactment 3

messaging architecture where each role in each process instance is mapped into
an agent-like entity to run and control it? An architecture with a central broker
(e.g. located at the OEM) that centrally enacts and controls the cross-enterprise
business processes? Or a mixture of both, a decentral broker architecture where
each enterprise provides a publicly visible instance (agent) to control and coor-
dinate their business process roles while hiding other, private, elements.

Thus, we can see using this scenario that there are different architectural
choices / paradigms possible for underlying information and communication tech-
nology (ICT) system design. Intuitively, none of these choices is per se better than
any other; making the right decision depends on a number of environmental char-
acteristics (called contingencies in [10]). In this paper we propose a model for de-
cision support suitable for enterprise architects to derive an appropriate support-
ing architecture paradigm for a given use case / application domain. Assuming
some model-driven design paradigm [17,4], we start from business level models
and (semi-automatically) transforms these models into (platform-independent)
ICT models (so-called PIMs); these PIM models are then subject to further trans-
formation via platform-specific models (PSMs) down to the code-level.

In this paper, we address the problem of selecting a suitable ICT architecture
at the PIM level, thus resulting in an architecture-driven approach to CBP mod-
eling and enactment. The contribution of this paper is fourfold: First, we identify
three important architectural patterns for CBP enactment; second we propose a
decision method for architecture selection based on the analytic hierarchy pro-
cess (AHP [31]); third, we show the applicability of the method by applying it
to application scenarios with differing characteristics; fourth, we investigate the
robustness of the decision method by performing a sensitivity analysis.

The paper is structured as follows: In Section 2, we provide the background on
service-oriented architecture, model-driven engineering, and decision methods.
Section 3 presents three ICT-level architecture patterns for CBPs. The decision
method is proposed in Section 4; Section 5 analyzes the applicability of our
method to two application scenarios. The paper ends with a discussion and
outlook in Section 6.

2 Background

2.1 Model-Driven Engineering

Software engineering currently witnesses a paradigm shift from object-oriented
implementation towards model-driven implementation. This carries important
consequences on the way information systems are built and maintained [4].
Model-driven Engineering (MDE) treats models as first class artifacts, which
are used for modeling and code generation. This raises the level of abstraction
at which developers create and evolve software [16] and reduces complexity of
software artifacts by separating concerns and aspects of a system [17]. Thus
MDE shifts the focus of software development away from the technology do-
main towards the problem domain. Largely automated model transformations
refine (semi-)automatically abstract models to more concrete models or simply

4 B. Bauer, J.P. Müller, and S. Roser

describe mappings between models of the same level of abstraction. In particu-
lar, transformation engines and generators are used to generate code and other
target domain artifacts with input from both modeling experts and domain ex-
perts [32]. MDE is an approach to bridge the semantic gap that exists between
domain-specific concepts encountered in modern software applications and stan-
dard programming technologies used to implement them [6].

Two prominent representatives of MDE are the OMG’s Model Driven Archi-
tecture (MDA) and the software factory initiative from Microsoft.

In MDE, models and model transformations, which can be also treated as
models, embody critical solutions and insights to enterprise challenges and hence
are seen as assets for an organization [21]. Assets are artifacts that provide so-
lutions to problems, should be reusable in and customizable to various contexts.

2.2 Service-Oriented Multiagent Architectures

In recent years, a new generation of integration solutions has been developed
under the service-oriented paradigm, which lends itself to develop highly adapt-
able solutions and to reuse existing applications. In a service-oriented world, sets
of services are assembled and reused to quickly adapt to new business needs.
However, service-orientation does not provide an integration solution by itself.
Service-oriented integration introduces the concept of service (which can be im-
plemented through Web Services) to establish a platform-independent model
with various integration architectures. Service-oriented architecture (SOA) can
be realized by an agent-oriented architecture. However, agents have additional
features, services usually not have, like high-level, speech-act based communica-
tion, pre-defined interaction protocols (e.g. the ContractNet protocol or auction
mechanisms) and goal-oriented composition of agents. In other words, agents are
more sophisticated services. See also [33].

Service. While, from an economic point of view, a service is the non-material
equivalent of a good sold to a costumer, we use the term service from an ICT
point of view, where a service is seen as a business or technical functionality. We
define service ”as a well-defined, self-contained function that does not depend on
the context or state of other services” [5]. Service-orientation is based on this
concept of service.

Agents. Software agents are computer systems capable of flexible autonomous
action in a dynamic, unpredictable and open environment [18]. These character-
istics give agent technology a high potential to support process-centered model-
ing and operation of businesses. Consequently, starting with ADEPT [19], there
have been various research efforts of using agent technology in business process
management. However, the focus of ADEPT was on communication and collab-
oration in business process management. It was not geared to being a directly
usable business process support platform. Migrating agent technology success-
fully to business applications requires end-to-end solutions that integrate with
standards, that preserve companies’ investment in hardware, software platforms,

Decentralized Business Process Modeling and Enactment 5

tools, and people, and that enable the incremental introduction of new technolo-
gies. The OMG has set up a new standardization effort called UML Metamodel
and Profile for Service (UPMS). The UPMS RFP requests a services metamodel
and profile for extending UML with capabilities applicable to modeling services
using a SOA1. Within this standardization effort a new RFP is prepared for the
integration of agent technology in a service-oriented world. This can provide a
first step towards solving this problem.

2.3 Cross-Enterprise Business Processes

Many people and organizations participate in the construction of a software sys-
tem, and impose different concerns and requirements on the system, in particular
in CBPs. Business considerations determine non-functional qualities that must
be accommodated in the system architecture. Quality attributes like availabil-
ity, modifiability, performance, security, testability, usability, or business quali-
ties are orthogonal to functional attributes describing the system’s capabilities,
services, and behavior. Since quality attributes are critical to the success of a
system, they must be considered throughout design, implementation and deploy-
ment. Beyond these quality attributes, costs e.g. for hardware, software licences,
and software development have to be considered when choosing the right ar-
chitecture. In our work we investigate how service-oriented or agent-oriented
architecture of software systems for CBPs can be derived from business level
descriptions. The architecture variants and model transformations we describe
are independent of functional attributes, since they can be applied to (nearly)
any models describing CBPs. We investigate how three architecture variants for
realizing CBPs in service-oriented software systems can be derived from busi-
ness level descriptions and how to evaluate the right architecture for different
contexts, thus supporting the enactment of high-level CBP specifications.

Orchestration & Choreography. Orchestration and choreography describe two
complimentary notions of a process. In orchestration a central entity coordi-
nates the execution of services involved in a higher-level business process. Only
the coordinator of the orchestration is aware of this composition. Choreography
describes the interactions of collaborating entities (e.g. services or agents), each
of which may have their own internal orchestration processes. These interac-
tions are often structured into interaction protocols to represent the conversa-
tion between the parties. [27] An important distinction between orchestration
and choreography is the fact that orchestration is generally owned and operated
by a single organization while in a choreography no organization necessarily
controls the collaboration logic [11].

Process Modeling. In process modeling it is common to distinguish between an
internal and an external view of business processes. Depending on the viewpoint,
a process is described either as an executable, abstract, or collaborative process:

1 see http://adtf.omg.org/adptf info.htm

http://adtf.omg.org/adptf_info.htm

6 B. Bauer, J.P. Müller, and S. Roser

The internal view models the ’how’ of a business process from the modeler’s
view. As the flow of an executable process [26] is described from the viewpoint of
a single process coordinating its sub-processes, this is often referred to as process
orchestration. Abstract processes model the external view on and the ’what’ of
a business process. Each process specifies the public interactions it performs
in relation to its roles in collaborations. A collaborative process describes the
collaboration between abstract processes in the case of process choreography. The
collaborations between the involved parties are modeled as interaction patterns
between their roles from the viewpoint of an external observer.

2.4 ICT Architecture Variants for CBP Enactment

Service-oriented integration solutions can be categorized by their topology (see
Figure 2). In a purely decentralized MAS topology services of the participating
organizations implicitly establish the collaborative process through direct mes-
sage exchange; this is a realization of choreography. In a hierarchical topology a
controller service defines the steps necessary to achieve the overall goal and maps
these steps to services provided by the contributing organizations; this is kind
realization of orchestration. However, in many cases, a mixture of hierarchical
and decentralized MAS topology, i.e. a heterogenous topology, is used to realize
complex multipartner collaborations [23].

Fig. 2. Coordination topologies

2.5 Architecture Evaluation and Decision Methods

Architecture Evaluation. Scenario-based ICT architecture evaluation is used
to determine quality of software architecture. In architecture evaluation meth-
ods like ATAM, SAAM, or ARID [1,8] quality attributes are characterized by
scenario descriptions.

Quality attributes are part of the non-functional requirements and therefore
properties of a system. They can be broadly grouped into two categories [9].
Qualities like performance, security, availability, and usability are observable via

Decentralized Business Process Modeling and Enactment 7

execution at run-time, and qualities like extensibility, modifiability, portability,
or reusability, which are not observable via execution [3].

According to Bass et al. [1], scenario descriptions consist of a stimulus (a
condition that needs to be considered when it arrives at a system), a source of
stimulus (some entity that generates the stimulus) , an environment (the stim-
ulus occurs within certain conditions), an artifact (the part of the system that
is stimulated), a response (the response is the activity undertaken after arrival
of the stimulus) and a response measure (defines how the result of the response
is measured). General scenarios [2] are applicable to many software systems and
have architectural implications; they establish sets of scenarios which are con-
figured to the respective application domain (for which evaluation is performed)
by varying the expected response value scales of the scenarios.

To be able to decide how good a quality attribute or a scenario is supported by
a software architecture pattern and to compare architecture patterns, it is crucial
to understand how an architecture influences quality attributes. According to
Bass et al. [1] architects use so-called tactics to achieve quality attributes. A
tactic is a design decision that influences the control of a quality attribute.
The software architecture patterns described in this article make use of the
following tactics (non-exclusive list; for detailed description see also [1] p.99ff):
Maintain semantic coherence, anticipate expected changes, generalize module,
restrict communication paths, use an intermediary, maintain existing interfaces,
and hide information.

Tactics are used by an architect to create a design using design patterns,
architectural patterns, or architectural strategies. An architect usually chooses
a pattern or a collection of patterns designed to realize one or more tactics.
However, each pattern implements multiple tactics, whether desired or not. The
following list provides an overview of architecture patterns, design patterns,
and design principles used to realize the above described tactics (non-exclusive
list compiled from [1], [12], [11], and [13]): Wrapper, broker, abstraction, loose
coupling, and orchestration.

Analytic Hierarchy Process. The Analytic Hierarchy Process (AHP) [31] is
a decision making approach, which decomposes a decision problem into a hi-
erarchical network of factors and subfactors. Factor decomposition establishes
a hierarchy of first level and second level factors cascading from the decision
objective or goal. AHP applies pairwise comparisons to the factors and the al-
ternatives in the decision making process. Pairwise comparisons lend themselves
to solving problems with limited number of choices, where each choice has a
number of attributes and it is difficult to formalize some of those attributes.
Finally the ratings of the second level factors are aggregated to first level factors
and the final rating.

Contingency Theory. The contingency theory for organizations [10] is used
to rationalize how the various aspects of organizations’ environment (called con-
tingency factors) influence organization structure. It suggests, that there is no
unique or best way to organize an organization, but the design of an organization

8 B. Bauer, J.P. Müller, and S. Roser

and its systems must ’fit’ with its environment. The ”organizational effectiveness
results from the fitting characteristics of the organization, such as its structure,
to contingencies that reflect the situation of the organization” [10, p.1]. ”Contin-
gency theory (...) sees maximum performance as resulting from adopting, not the
maximum, but rather the appropriate level of the structural variable that fits the
contingency. Therefore, the optimal structural level is seldom the maximum, and
which level is optimal is dependent upon the level of the contingency variable”
[10, p.4]. Translating this into the terms of companies and their business systems,
a maximum of centralization, decentralization, or some of the ICT system ar-
chitectural qualities like modifiability, security, etc., will seldom yield maximum
performance of an ICT system for the overall business goals.

3 Architecture Paradigms for CBPs

In Sections 2.4 and 2.2 we have introduced the abstract topologies for CBP
enactment and described how service-orientation and agents fit together. Now
we have a closer look at these coordination architectures and how they can be
applied to realize service-oriented integration solutions. These architectures are
used to control the conversation flow between the participating organizations. In
an agent world this is comparable to interaction protocols. For the description
of the coordination architecture we assume, that each organization willing to
participate in a cross-organizational collaboration supported by ICT systems,
has a set of elementary services (ES), which are as far as possible realized by
agents. These elementary services are application, business, or hybrid services.
In our descriptions we also assume without loss of generality, that the elementary
services are realized as process services, so that we can use the distinction be-
tween executable and abstract process. Nevertheless, elementary services could
be realized by arbitrary code fragments. An elementary service can only be a
controller service with regard to the organizations’ internal service composition,
but not with regard to the collaboration process. Cross-organizational business

Fig. 3. Brokerless architecture

Decentralized Business Process Modeling and Enactment 9

Fig. 4. Central broker architecture

Fig. 5. Decentral broker architecture

processes (CBPs) represent the conversation flow and message exchange between
the organizations participating in the collaboration (in particular in an agent
communication language).

– Brokerless architecture: A brokerless coordination architecture (see Figure 3)
can be used to realize the decentralized MAS topology, where messages are
exchanged directly between the elementary services of the participants as
usual in an agents world. Due to the mutual exchange of messages the ele-
mentary services depend on each other. Control flow logic of CBPs is realized

10 B. Bauer, J.P. Müller, and S. Roser

by the executable process of the participants’ elementary services. Changing
the business protocol would result in changing multiple elementary services,
i.e. their executable processes. Further, the abstract process of the elemen-
tary services are directly exposed to the collaboration space and therefore
are directly accessible by entities outside enterprise boundaries.

– Central broker architecture: Figure 4 depicts the central broker coordinationar-
chitecture. Messages are no longer exchanged directly between the elementary
services, but over a central broker component, which is realized by a controller
service.The controller service is a process that orchestrates the elementary ser-
vices of the participating organizations. It acts as a global observer process co-
ordinating the partners as well as making decisions on the basis of data used in
the CBP. In the case of a change to the CBP protocol’s messages and seman-
tics, only the broker process needs to be modified. Since the broker process is
not necessarily owned by one of the participating partners, organizations may
hide their elementary services from their collaborators. However, they have to
reveal them to a third party instead.

– Decentral broker architecture: The decentralized broker architecture intro-
duces elements of the decentralized MAS topology in the hierarchical topol-
ogy of the central broker architecture. It splits the single broker component
into several controller processes jointly providing the broker functionality
(note the boundaries in Figure 5). Each organization provides one controller
service, also called view process (VP), which orchestrates the organization’s
internal elementary services. Messages across organizational boundaries are
only exchanged by the view processes, which encapsulate the elementary
services. In this architecture the elementary service can be seen as kind of
private processes (PP).

4 A Method for Evaluation of ICT Architecture
Applicability

This section presents an evaluation and decision method that helps to select ap-
propriate ICT architectures for CBPs enactment. The evaluation method takes
into account the trade-offs between coordination structures, which are imple-
mented by the ICT system architectures in terms of coordination costs and
vulnerability costs (see [24]). As visualized in Figure 6 the evaluation model dis-
tinguishes between quantitative factors, that are measurable by concrete figures
(objective factors), and qualitative (subjective factors), which are difficult or
impossible to measure. Coordination costs to establish and maintain communi-
cation links between collaborating patterns are included as quantitative factors
in terms of software, hardware, and labor in the evaluation model. Coordination
costs like costs for exchanging messages between collaborating partners are taken
into account by qualitative factors. Vulnerability costs, which are ”the unavoid-
able costs of a changed situation that are incurred before the organization can
adapt to a new situation” [24], are qualitative factors in the evaluation model.

Decentralized Business Process Modeling and Enactment 11

Fig. 6. Multi-criteria decision model for ICT architectures

To be able to compare the architectural CBP approaches in the face of archi-
tectural decisions, it is necessary to get a quantitative measure from qualitative
actors. Thus, we apply, extend and customize the multi-criteria decision model
of Ghandforoush et al. [15], which is a modified version of Brown and Gibson’s
model [7]. As it is a quantitative model, it is useful for selecting one alternative
from a given set of alternatives based on quantitative and qualitative factors.
Figure 6 depicts the design of our multi-criteria decision model developed to
evaluate ICT architectures for CBP enactment. The rating of the quantitative
factors is determined by the means of cash-flow analysis of the predicted costs.
For rating the qualitative factors we combine AHP and scenario-based software
architecture evaluation methods. First, based on the AHP, the factors, which
have to be considered in the evaluation, are determined by decomposing the
evaluation problem and arranged in a hierarchy decomposition tree. The factors
are described by the means of quality attributes and scenarios. Rating the sce-
narios and the alternatives is done by pairwise comparison. The ratings, i.e. the
pairwise comparisons, are based upon how good the alternatives realize tactics
supporting the respective scenarios.

4.1 Multi-criteria Evaluation and Decision Model

The multi-criteria evaluation and decision distinguishes between objective (quan-
titative) factors and subjective (qualitative) factors.

– Objective factors are evaluated in monetary terms, and as such are eas-
ily quantifiable. Our quantification is based on the cash flow approach and
therefore on the discounted present value. The evaluation model considers
costs for software, hardware and labor.2

2 The focus of the evaluation model is on the viewpoint of an integrator. The integrator
takes into account purchase, licensing, set up, and maintenance costs for hardware
and integration and maintenance costs for software. Development of software it-
self plays a secondary role, since the service or agent software has to be developed
independent of the chosen architecture.

12 B. Bauer, J.P. Müller, and S. Roser

– Subjective factors are characterized by the fact that they are qualitative
measures that typically cannot be quantified. When evaluating software ar-
chitecture, quality attributes and scenarios are measures in qualitative terms.

The underlying principle of the model is to combine the two evaluation factors
into a common evaluation measure. This requires that quantitative considera-
tions and qualitative considerations, where the latter have to be transformed
in common measurable units. The model allows to select one software architec-
ture pattern from a given set of alternatives. Following [15], for each software
architecture pattern i an architecture evaluation measure AEMi is defined:

AEMi = X · OFMi + (1 − X) · SFMi (1)

where

AEMi = architecture evaluation measure, 0 ≤ AEMi ≤ 1

OFMi = objective factor measure, 0 ≤ OFMi ≤ 1 and
n∑

i=1

OFMi = 1

SFMi = subjective factor measure, 0 ≤ SFMi ≤ 1 and
n∑

i=1

SFMi = 1

X = weight assigned to the objective factor, 0 ≤ X ≤ 1
n = total number of software architecture patterns evaluated, 1 ≤ i ≤ n

AEMi is a measure between 0 and 1 for a particular software architecture pat-
tern, where software architecture patterns with a higher measure score better
than patterns with a lower measure. The measure depends to large extend on
the choice of the weight X assigned to the objective factors OFMi and the
subjective factors SFMi. This parameter can be used for sensitivity analysis.

Objective factors are quantified in terms of monetary units. In order to make
them comparable to subjective factors, the objective factors have to be converted
to a dimensionless index, i.e. an index with the dimension of one:

OFMi =
1

OFCi ·
∑n

i=1

(
1

OFCi

) , i = 1, 2, . . . , n (2)

where

OFCi = total objective factor costs for software architecture pattern i

Brown and Gibson [7] ensure through three principles that the objective factor
measure is compatible with the subjective factor measure: the software architec-
ture pattern with the highest cost will have the minimum OFMi, the relationship
of OFCi for each pattern relative to all other patterns is preserved, and the sum
of all OFMi is equal to 1.

The subjective factors can be grouped into a hierarchy of factors. A first level
factors is an aggregation of a set of second levels factors. Within one first level

Decentralized Business Process Modeling and Enactment 13

factor the relative importance of a second level factor is rated by assigning a
weight SSWkj to each of the second level factors. Similar the weight SFWj

specifies the relative importance of one first level factor to the other first level
factors. Both factors weights depend on the organizational context and the col-
laboration for which the software architecture patterns are evaluated. The factor
weights are independent of software architecture patterns, and can also be used
for sensitivity analysis. The subjective factor measure SFMi is defined as follows:

SFMi =
m∑

j=1

(
SFWj ·

oj∑

k=1

(
SSWkj · SAWikj

)
)

(3)

SFWj =
SFW ′

j∑m
j=1 SFW ′

j

(4)

SSWkj =
SSW ′

kj∑oj

k=1 SSW ′
kj

(5)

SAWikj =
SAW ′

ikj∑n
i=1 SAW ′

ikj

(6)

where

SFWj = normalized weight value of first level factor j

SFW ′
j = weight of first level factor j to each first level factor

SSWkj = normalized weight value of 2nd level factor kj for one 1st level
factor j

SSW ′
kj

= weight of second level factor kj to all second level factors

in first level factor j

SAWikj = normalized rating of architecture variant i for subjective factor kj

SAW ′
ikj

= rating of architecture variant i for subjective factor kj

m = total number of first level factors among the subjective factors
oj = total number of second level factors in a specific first level factor j

All, the first level factor weight SFWj , the second level factor weight SSWkj ,
and the architecture variant rating SAWikj are normalized measures and sum
up to one. Thus also the subjective factor measure SFMi sums up to one and is
represented in the same numerical scale as the objective factors. SFWj , SSWkj ,
and SAWikj are defined as follows:

4.2 Measuring Qualitative Factors

The part of the evaluation and decision model concerned with measuring qualita-
tive factors is supposed to deal with two main challenges. First it has to provide
concepts to evaluate software architecture patterns with respect to organiza-
tions’ demands. Second the model has to provide means to support people using

14 B. Bauer, J.P. Müller, and S. Roser

the model by rating factors and alternatives in order to achieve reasonable and
consistent measurements throughout the evaluation process.

We use scenario-based evaluation for software architecture patterns, which is
a good way to determine quality attributes of software architecture. The AHP
[31] first decomposes a decision problem into a hierarchical network of factors
and subfactors before it aggregates second level factors to first level factors. In
scenario-based evaluation, first level factors are represented by quality attributes
and second level factors are represented by scenario descriptions.

Since it is problematic to provide sensible scales for measuring the response
value of our high level software architectural patterns, we make use of pairwise
comparison (see AHP [31]) to rate the qualitative factors and the evaluated
software architecture patterns. The decisions for the comparisons are made on
the basis of which tactics the evaluated software architecture patterns support
and the contingency factors influencing organizations and the collaboration.

Scenario-Based ICT Architecture Evaluation. Scenario-based ICT archi-
tecture evaluation is used to determine quality of software architecture. Hence
desired architectural quality attributes are refined by general usage scenarios.
These allow a detailed rating of how good quality attributes are supported by
software architecture pattern. Quality attributes and scenarios descriptions are
used to determine the qualitative factors measure.

Quality Attributes. Our evaluation model considers the strategic quality at-
tributes modifiability, privacy, reusability and interoperability. For the quality
attribute privacy we evaluate the privacy of corporate data and knowledge, which
has to be exposed by the enterprises due to the applied software architecture pat-
tern. We do not consider execution related topics like intrusion, denial of service
attacks, etc. In the case of interoperability, which can be observed both at exe-
cution and build time, we only consider strategic issues like change and reuse of
functionality or interaction protocols; we do not consider e.g. conversion of mes-
sage data at runtime. Furthermore, the evaluation model addresses some more
run-time related issues like efficiency and manageability of process execution.

Scenario Descriptions. The evaluation model is supposed to be suitable for a di-
versity of systems supporting businesses collaborations. Thus, general scenarios
have to be developed, which can be applied to classes of systems rather than to
one concrete system. Scenarios represent the characteristics of quality attributes
and are used to determine how good quality attributes can be satisfied by sys-
tems realizing certain software architecture patterns. The following list gives
an overview of the quality attributes (printed in boldface) and the associated
scenarios defined for our evaluation and decision model.

– Modifiability
• Scenario 1: Modification of CBPs
• Scenario 2: Change of partners in CBP
• Scenario 3: Incremental development of CBPs
• Scenario 4: Change of elementary services

Decentralized Business Process Modeling and Enactment 15

• Scenario 5: Development of CBP variants
– Privacy

• Scenario 6: Privacy of internal ESs related data
• Scenario 7: Privacy of internal CBPs realizations

– Reusability
• Scenario 8: Reuse of CBPs
• Scenario 9: Reuse of elementary services

– Interoperability
• Scenario 10: Change of CBP protocol specification
• Scenario 11: Change of ES’s interfaces

– Efficiency
• Scenario 12: Bottle-neck
• Scenario 13: Security overhead

– Manageability
• Scenario 14: Versioning
• Scenario 15: Monitoring

Table 1 depicts the description of the ‘Modification of CBPs’ scenario. Descrip-
tions of the other scenarios can be found in [28].

Factor Decomposition and Pairwise Comparisons. Factor decomposition
and pairwise comparisons of our evaluation model are based on the Analytic
Hierarchy Process (AHP) [31].

Factor decomposition. Factor decomposition establishes a hierarchy of first level
and second level factors cascading from the decision objective or goal. The hier-
archy for our decision method is structured as follows (see Figure 7): At the top
level one can find the overall goal to have the best architecture quality. At the
first level contains quality attributes like modifiability, privacy, reuse, etc., which

Table 1. Scenario 1 – Modification of CBPs

Scenario 1 – Modification of CBPs
Source Management

Stimulus Due to the constant and rapid change in business existing
CBPs have to be adapted to the new business models.

Environment Design-time

Artifact Cross-organizational business process

Response The necessary changes in order to enact the new CBP affect a
minimal number of existing modules. Necessary change of ex-
isting modules should have no side-effects on other processes
(e.g CBPs).

Response
Measure

Without broker: up to n ESs of the partners are affected
Central broker: the central broker is affected
Decentral broker: VPs of the respective partner(s) are
affected

16 B. Bauer, J.P. Müller, and S. Roser

Fig. 7. AHP decomposition rree for CBP evaluation model

contribute to the quality of an architecture. The scenarios are used at the second
level to give a more detailed description of how the quality attributes have to
be established. At the bottom level we can find the architectural variants which
have to support the scenarios.

Pairwise Comparisons. AHP uses pairwise comparison for both determining the
priority for the subjective factors and rating the architectural alternatives.

Weighting the Subjective Factors. To determine the weights for subjective factors,
i.e. which scenarios or quality attribute is more important than another, pairwise
comparisons are conducted between the first-level factors and the second-level fac-
tors. Therefore the factors are arranged in a matrix a and the evaluators have to
determine the ratings aij of the factors by pairwise comparisons. They use a scale
to measure relative importance ranging from one to nine (one means that both
factors are equally important; nine means that one factor is extremely more im-
portant than another). To calculate the ratios of the factors vi, the entries of the
matrix aij have to be normalized to aij . Then the normalized matrix entries aij of
each row are summed up and divided through the number factors, i.e. the average
value of the normalized matrix entries for each row is determined.

vi =
∑ n

j=1 aij

n =
∑ n

j=1
aij∑n

i=1 aij

n

As a result, vi is the weight for the respective SFW ′
j or SSW ′

kj
for the first

and second level factors. It holds that SFW ′
j = SFWj and SSW ′

kj
= SSWkj

since the weights of the factors vi are already normalized. The aggregation of
the factor weights is achieved by multiplying the second level factor weight with
the respective first level factor weight.

Rating the Scenarios. To rate the scenarios, our decision method applies a rel-
ative measurement, which based on a scale (see above) to express preference of
one alternative over another. For example, one can say that to support a sce-
nario under certain contingencies, alternative a1 is strongly favored instead of

Decentralized Business Process Modeling and Enactment 17

alternative a2. For each scenario an evaluation matrix is established, in which
the alternatives are compared. To determine the rating of the alternatives (i.e.
the priority vector), we apply the ‘ideal mode’ which should be used in cases
where one alternative shall be chosen [30,29]. The ‘ideal mode’ solves the rank
reversal problem, where the number and kind of alternatives might influence the
decision. The matrix is constructed analogous to the matrix for weighting the
scenarios. Only the calculation of the priority vector’s values differs, since we
apply the ‘ideal mode’ and not the ‘distributive mode’. One obtains the values
of the priority vector in ideal mode vid

i by dividing vi by the maximal value of v:
vid

i = vi

max(vi)
; vid

i corresponds to the rating of the architecture variant SAW ′
ikj

.
The measurement values of how good ICT coordination architectures sup-

port the scenarios is specific to organizational and collaboration context, i.e.
the contingencies. It is possible that under certain contingencies one alternative
is the best for supporting a scenario, while under different contingencies this
alternative may be less appropriate to support the same scenario.

Rating the ICT Architecture Alternative. To compare the ICT coordina-
tion architectures one needs to know how good these architectures support archi-
tecture quality attributes and scenarios. Therefore it is necessary to understand
by which means an architect influences the quality attributes of an architecture.
As described in [1], software architects use so-called tactics to achieve quality
attributes (see Section 2.5).

In the case of scenario 1 the architect applies tactics that reduce the number
of modules and processes (response of scenario 1) that are affected by changes
to processes (stimulus of scenario 1). Through the maintenance of semantic
coherence the architect ensures that the responsibilities among the services in
a CBP work together without excessive reliance on each other. To anticipate
expected changes reduces the services that need to be modified in case of certain
changes. Generalized services allow to compute a broader range of functions
based on the same input. An architect can apply these three tactics to CBP
architectures by using the patterns abstraction, loose coupling, and orchestration.

With this information it is, in general, possible to decide whether one ar-
chitecture variant supports a scenario better than another one. Having a look
at scenario 1 (cp. Table 1), the decentral broker architecture incorporates the
patterns abstraction, loose coupling, and orchestration for CBPs, which is the ar-
tifact of the scenario description. Thus it realizes the tactics maintain semantic
coherence, anticipate expected changes, and generalize module. The architecture
without broker instead, realizes none of these patterns and tactics for the artifact
(CBPs) of scenario 1. Thus we can infer that the decentral broker architecture
better supports scenario 1 than the architecture without broker. The remaining
question is, how contingencies influence the ratings and the distance between
the ratings of the evaluated architectures.

Contingencies. In our decision method we consider contingencies within the col-
laboration network (internal contingencies) and outside the collaboration network
(external contingencies). Internal contingencies characterize the collaboration

18 B. Bauer, J.P. Müller, and S. Roser

model and the organizations participating in the collaborations. These are: the
collaboration topology, that takes into account the distribution of influence and
power among the partners; the complexity and specificity of the products devel-
oped by the collaborating organizations; the service flow that is characterized
by the amount of data and the number of messages exchanged; aspects related
with the process itself like length of the process or the estimated number of pro-
cess instance during execution. External contingencies are external factors that
highly influence organizations’ decision and strategies, and therefore impact also
the choice of an ICT coordination architecture: standardization considers the exis-
tence of industry-specific, national, or international standards; maturity takes the
existence of commonly accepted processes, protocols, etc., into account; business
semantics considers the availability of standards and their maturity with regard
to defining semantics of a specific domain; legislation comprises the regulations
which impose special requirements regarding security, monitoring, and other as-
pects of the collaboration. [22]

If we assume for example a high degree of standardization to rate scenario 1,
the decentral broker architecture is not much better than or even equal to the
architecture without broker. Standardized parts of the CBP and the ESs can
be reused and combined in arbitrary ways adapting to the change in business
(stimulus of scenario 1). Necessary changes affect about the same number of
modules (cp. response and response measure of scenario 1 in Table 1) in both
coordination architectures.

Of course there exist other contingencies, which are also relevant for the deci-
sion about an ICT coordination architecture. For example, the dynamics of the
collaboration (internal contingency) and the industry dynamics (external contin-
gency) both address the aspect of change. Since change is already covered by the
scenario descriptions, this aspect has to be considered by weighing scenarios and
quality attributes. Change is not addressed a second time in rating the scenarios.

4.3 Measuring Quantitative Factors

In the decision method quantitative factors are evaluated in monetary terms on
the basis of the discounted cash flow approach.3 The discounted present value of
the future cash flows FV D

i , which corresponds to the objective factor measure
OFCi for a software architecture pattern i, is defined as follows:

OFCi =
m∑

j=1

FV D
ij

=
N−1∑

t=0

FVijt

(1 + d)t (7)

where

FV D
ij

= discounted present value of the future cash flow (FV) for factor j

FVijt
= nominal value of a cash flow amount in a future period t for factor j

3 The description of the quantitative factors is quite short, since we focus on the
qualitative factors and contingencies in this paper.

Decentralized Business Process Modeling and Enactment 19

d = discount rate
N = number of discounting periods
m = total number of objective factors

The decision model considers costs for software (purchasing costs and annual
licences), hardware (purchasing costs and annual leasing fees) and labor (costs
to set up the systems, maintenance costs, and costs to develop and deploy new
and modified processes).

5 Applying the Evaluation Method

As described in the introduction, companies organize themselves into global
networks and outsource those activities that can be performed quicker, more
effectively, or at lower cost, by others [34]. However, outsourcing and interacting
in global networks also increases overhead costs for collaboration, coordination,
and intermediation. One approach to describe the influence of organizational
structure on these overhead costs is the transaction cost model [37,38]. In today’s
economies, transactions for example make up more than 30% of the total costs
of an automobile [36]. Transaction costs heavily depend on the capabilities of
business systems to keep up with constantly evolving business relationships and
cross-organizational value chains. However, in the comparison to transaction
costs, IT costs are much less than transaction costs (in the Automotive example
this is about 6% of the overall costs [36]).

In this section, we apply the evaluation method to two scenarios: a virtual
enterprise scenario (Section 5.1) and to a scenario with collaborating SMEs (Sec-
tion 5.2). In doing so, the goal is to identify the collaboration architecture which
best supports the cross-organizational value chain and helps to reduce transac-
tion costs. The trade-off between reducing transaction costs (qualitative factors)
and reducing of IT cost (quantitative factors) through the choice of a collabora-
tion architecture is discussed in a sensitivity analysis.

5.1 Virtual Enterprise Scenario

This scenario deals with virtual enterprises that collaborate in big, long-running
CBPs (approx. 90 processing steps). The OEM and the big first-tier suppliers
introduced in the automotive scenario in Section 1 together form a virtual enter-
prise, which builds a temporary network of independent companies, suppliers,
customers. They are linked by information technology to share costs, skills, and
access to one another’s markets. The services the partners provide to the CBP
are to 50% legacy applications, which will be replaced within the next five years.
The services, their interfaces, and data types are not standardized, so that inter-
operability is an important issue. About 30% of the CBP are standardized and
it may be necessary to provide variants of the CBP. The privacy of the enter-
prises’ services is only medium important, since the enterprises make their profit
through economy of scale. Hence, they also participate with their elementary
services in other CBPs.

20 B. Bauer, J.P. Müller, and S. Roser

Determining the Qualitative Measure

Weighting the subjective factors. To determine the weight of the quality at-
tributes and the scenarios pairwise comparison are applied like described in
Section 4.2.

Table 2. Priority comparison matrix for the first level factors

mod. pri. reuse int. eff. man. vi

modifiability 1 7 3 1
3 3 3 0.21

privacy 1
7 1 1

4
1
9

1
5

1
5 0.03

reuse 1
3 4 1 1

5 1 1 0.10
interoperability 3 9 5 1 5 5 0.45

efficiency 1
3 5 1 1

5 1 1 0.10
managability 1

3 5 1 1
5 1 1 0.10

Table 2 depicts the weighting of the first level factors, i.e. the quality at-
tributes, for the virtual enterprise scenario. Modifiability is considered more
important than privacy and reuse but less important than interoperability. The
column of the priority vector vi depicts the weighting of the quality attributes.

Table 3. Priority comparison matrix for the second level factor modifiability

modifiability sc.1 sc.2 sc.3 sc.6 sc.11 vi

scenario 1 1 3 7 1
5

1
3 0.14

scenario 2 1
3 1 5 1

5
1
5 0.08

scenario 3 1
5

1
7 1 1

9
1
9 0.03

scenario 6 5 5 9 1 3 0.47
scenario 11 3 5 9 1

3 1 0.27

Table 3 depicts the weighting of the scenarios are used to describe the modifi-
ability attribute in the virtual enterprise scenario. The scenarios are analogously
compared as the other quality attributes in Table 2. The column of the priority
vector vi depicts the weighting of the scenarios.

Rating the Scenarios. The scenarios are rated by pairwise comparing the archi-
tecture alternatives. The decisions are based on how good the architectures sup-
port the scenarios via tactics and patterns). The rating, i.e. the values decision,
also depend on the characteristics of the contingency factors of the application
scenario for which the evaluation is performed.

Table 4 depicts the rating matrix for scenario 1. As described in Section 4.2
the central broker alternative supports scenario 1 better than the brokerless
alternative. Relevant contingencies for scenario 1 are the grade of standardization
and the maturity of the CPB and the services. Since both contingencies are rather
low in the virtual enterprise scenario, the architectural quality is important for
the support of this scenario, which leads to the comparison value 7 between the

Decentralized Business Process Modeling and Enactment 21

Table 4. Rating scenario 1

scenario 1 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
7 0.14

Cen-Br. 7 1 1 1.00
Dec-Br. 7 1 1 1.00

central broker and without broker architecture. The central and decentral broker
architecture are rated equally important with the value 1. The column of the
priority vector vid

i depicts the weighting of the scenarios.

Overall Subjective Measure. The overall subjective measure is computed on the
basis of the factor weights and the scenario ratings. Table 5 depicts the relevant
data. In row two one can find the weighting of the quality attributes from Table
2. The weighting of the scenarios that describe the quality attributes are specified
in row four. The scenario ratings can be found in the columns of the respective
scenarios. For example the rating, i.e. priority vector values vid

i , for scenario 1
can be found in column 2 row 5-7. The overall subjective measure is calculated
with the formula (3) and can be found in the last column.

Table 5. Overall subjective measure

Modifiability Sec. Reuse Int.op. Eff. Man.

S
F

M
i
d

i

S
F

M
i

0.21 0.03 0.10 0.45 0.10 0.10
S1 S2 S3 S6 S11 S7 S8 S4 S9 S11 S5 S10 S12 S13 S14 S15

0.14 0.08 0.03 0.47 0.27 0.17 0.83 0.43 0.43 0.14 0.17 0.83 0.50 0.50 0.50 0.50
Wo-Br. 0.14 0.11 0.08 0.16 0.08 0.30 0.20 0.30 0.17 0.08 0.14 0.17 1.00 0.17 0.12 0.11 0.202 0.121
Cen-Br. 1.00 0.44 0.30 0.46 0.30 0.11 0.20 0.12 0.59 0.30 1.00 0.41 0.33 1.00 1.00 1.00 0.545 0.327
Dec-Br. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.60 0.44 0.920 0.552

Determining the Quantitative Measure

Overall Objective Measure. The objective measure is calculated on the basis of
the cash flow of the costs for software, labor, hardware. For the virtual enter-
prise scenario with four collaborating enterprises we have estimated the following
costs. It is important to understand, that the scale (euro, dollar, etc.) is not im-
portant for the overall objective measure, since the scale is transformed into an
dimensionless index. In Table 6 one can see that for the architecture without
broker 5075 thousand cost units were estimated (OFCi). The overall objective
measure OFMi can be found in the last column.

Sensitivity Analysis and Interpretation. The architectural evaluation mea-
sure AEMi for each architecture variant is determined on the basis on the objec-
tive factor measure OFMi and the subjective factor measure SFMi (see formula
(1)). The measure depends on the weight X assigned to the objective and sub-
jective factor. This weight lends itself also for sensitivity analysis.

22 B. Bauer, J.P. Müller, and S. Roser

Table 6. Overall subjective measure

Software Hardware Labour O
F

C
i

O
F

M
i

Wo-Br. 45K 75K 4955K 5075K 0.127
Cen-Br. 69K 95K 1200K 1364K 0.471
Dec-Br. 118K 135K 1367K 1620K 0.399

Fig. 8. Sensitivity analysis chart

Figure 8 depicts the sensitivity analysis chart for the virtual enterprise sce-
nario. The x-axis represents the importance of the objective factors measure
and the y-axis the architecture evaluation measure for the respective architec-
ture variant.

On the basis of this evaluation result we can conclude, that either the central
broker or the decentral broker architecture variant should be selected. The vari-
ant without broker gets significantly lower rating values for all X than the other
ones. The decentral broker architecture scores better for the qualitative mea-
surement (especially for X = 0), while the central broker architecture is better
in terms of IT costs. A feasible estimation of X is to consider the relationship
between the percentage of transaction costs and IT costs of the total costs. In
the automotive industry IT costs (6%) are low in comparison to the transaction
costs (30%) (cp. [36]). This leads to an estimation of X ≈ 0.2 for the virtual en-
terprise scenario applied to the automotive industry. Thus, we would suggest to
select the decentral broker architecture in the virtual enterprise scenario. Even if
transaction costs and IT costs got equally important (X = 0.5), the architecture
evaluation measure of the decentral broker variant would be still be a bit better
than the central broker variant.

Decentralized Business Process Modeling and Enactment 23

5.2 SME Scenario

This scenario represents the CBPs between the second-tier (or even third- and
fourth-tier suppliers) of the automotive scenario from Section 1. The second-tier
suppliers are SMEs that manufacture parts, which can be largely standardized
and can be reused in many cars or other application domains. The SMEs pro-
duce for example screws, fuses, circuit boards, etc.. They support rather short
processes with approx. 20 processing steps. The specificity of the service is low.
Smaller and equal partners (SMEs) frequently join and leave the collaborations
and most SMEs also participate in other similar collaborations. Participating
partners have similar interfaces, data types, etc., and the services and CBPs
are de-facto standardized (e.g. already formulated in ebXML). Hence, interop-
erability is not so an important issue to these organizations. Also changes to
the existing CBPs are rare (up to three times a year). However, about 50% of
the service offer by the SMEs are legacy applications, which will be partially
replaced within the next five years.

Determining the Qualitative Measure. The overall subjective measure can
be found in Table 7.

Table 7. Overall subjective measure

Modifiability Sec. Reuse Int.op. Eff. Man.

S
F

M
i
d

i

S
F

M
i

0.16 0.04 0.25 0.06 0.25 0.25
S1 S2 S3 S6 S11 S7 S8 S4 S9 S11 S5 S10 S12 S13 S14 S15

0.05 0.59 0.05 0.21 0.11 0.50 0.50 0.45 0.45 0.09 0.20 0.80 0.83 0.17 0.17 0.83
Wo-Br. 0.39 0.36 0.50 0.20 0.40 1.00 1.00 1.00 0.17 0.40 0.17 0.40 1.00 0.50 0.30 0.17 0.529 0.293
Cen-Br. 1.00 0.50 1.00 1.00 1.00 0.64 1.00 1.00 0.30 0.41 0.64 0.41 0.64 0.12 1.00 1.00 0.589 0.326
Dec-Br. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.55 1.00 1.00 1.00 1.00 0.40 1.00 0.50 1.00 0.688 0.381

Determining the Quantitative Measure. The overall objective measure can
be found in Table 8.

Table 8. Overall subjective measure

Software Hardware Labour O
F

C
i

O
F

M
i

Wo-Br. 100K 100K 100K 300K 0.453
Cen-Br. 124K 120K 195K 439K 0.310
Dec-Br. 197K 180v 198K 575K 0.237

Sensitivity Analysis and Interpretation. Figure 9 depicts the sensitivity
analysis chart for the SME. One can clearly see how the contingencies stan-
dardization and short processes influence the architecture evaluation measure.
Although the partners in the collaboration frequently change the architecture
variant without broker scores very well. For most X , the brokerless architecture
has the highest evaluation measure and even for low X its measure is hardly

24 B. Bauer, J.P. Müller, and S. Roser

Fig. 9. Sensitivity analysis chart

lower than the measure for the broker architecture. However, if contingencies
change, like new monitoring requirements from the government, the intersec-
tion point of the curves would be at a higher X (it would move to the right).
This would make the broker architectures more interesting to realize the SMEs
scenario.

6 Discussion and Outlook

The contribution of the work reported in this paper is fourfold: First, we iden-
tified three important architectural patterns for CBP enactment: brokerless ar-
chitecture, decentral broker architecture, and central broker architecture. Sec-
ond, we proposed a decision method for architecture selection based on the
analytic hierarchy process (AHP, see [31]). This method targets ICT architects
and promises a systematic way to evaluate and compare ICT level architecture
variants for a certain application scenario, based on pairwise comparison of alter-
natives. Third, we showed the applicability of our method by applying it to two
application scenarios with differing characteristics: A virtual enterprise scenario
(comparable to the relationship between the OEM and the selected first-tier
suppliers discussed in Section 1) and an SME network scenario (similar to the
second-tier network part of the example in Section 1). Finally, we investigated
the robustness of the decision method by performing a sensitivity analysis.

An area for future work is the examination and deeper evaluation of the de-
cision method. One aspect concerns the choice of making pairwise comparisons
between alternatives as described in Section 4. Our experience so far indicates
that pairwise comparisons reduce the amount of information that is necessary for
decisions. Since people can only deal with information involving simultaneously
a small number of facts (seven plus or minus two) [25], pairwise comparisons
help evaluators to make better judgements compared to methods where more

Decentralized Business Process Modeling and Enactment 25

information needs to be considered. Though pairwise comparisons require more
complex calculations than other rating approaches, they promise to provide more
exact results. The AHP method involves also redundant comparisons to improve
validity, recognizing that participants may be uncertain or make poor judge-
ments in some of the comparisons. Further investigation are needed to achieve a
more fundamental understanding of the trade-offs involved in redundant pairwise
comparisons and possible alternatives.

A second area concerns the question how decision methods as the one described
in this paper can be built into existing enterprise modeling frameworks and model-
driven IDEs, to support process modelers and ICT architects in their task of cre-
ating and managing executable CBP specifications from business level models.
Also, more fine-grained models and extensions of our decision method need to be
developed to support this process down to the platform-specific and code levels.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Reading (2003)

2. Bass, L., John, B.E.: Linking Usability to Software Architecture Patterns Through
General Scenarios. Journal of Systems and Software 66, 187–197 (2003)

3. Bennett, D.W.: Designing Hard Software - The Essential Task. Prentice Hall, En-
glewood Cliffs (1997)

4. Bézivin, J.: On the unification power of models. Software and System Modeling 4,
171–188 (2005)

5. Birman, A., Ritsko, J.: Preface to Service-Oriented Architecture. IBM Systems
Journal 44, 651–652 (2005)

6. Booch, G., Brown, A., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA Manifesto.
MDA Journal (2004)

7. Brown, P.A., Gibson, D.F.: A quantified model for facility site selection application
to multiplant location problem. AIIE transactions: industrial engineering research
and development 4, 1–10 (1972)

8. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architecture. Addison-
Wesley, Reading (2002)

9. Dolan, T.J.: Architecture assessment of Information-System Families. PhD thesis,
Technische Universiteit Eindhoven (2001)

10. Donaldson, L.: The Contingency Theory of Organizations. SAGE Publications,
Inc., Thousand Oaks (2001)

11. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall International, Englewood Cliffs (2005)

12. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall International, Englewood Cliffs (2004)

13. Gamma, E., Helm, R., Johnson, R.E.: Design Patterns. In: Elements of Reusable
Object-Oriented Software, Addison-Wesley Longman, Amsterdam (1995)

14. Garcia-Camino, A.,Noriega, P., Rodriguez-Aguilar, J.: ImplementingNorms in Elec-
tronic Institutions. In:Fourth International JointConference onAutonomousAgents
and Multiagent Systems (AAMAS 2005), pp. 667–673. ACM Press, New York (2005)

15. Ghandforoush, P., Huang, P.Y., Taylor, B.W.: A mulit-criteria decision model for
the selection of a computerized manufacturing control system. International Jour-
nal of Production Research 23, 117–128 (1985)

26 B. Bauer, J.P. Müller, and S. Roser

16. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. Wiley Publishing Inc.,
Chichester (2004)

17. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45, 451–461 (2006)

18. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and De-
velopment. Journal of Autonomous Agents and Multi-Agent Systems 1, 7–38 (1998)

19. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B.: Autonomous
Agents for Business Process Management. Int. Journal of Applied Artificial Intel-
ligence 14, 145–189 (2000)

20. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B., Alty, J.L.:
Implementing a Business Process Management System using ADEPT: A Real-
World Case Study. Int. Journal of Applied Artificial Intelligence 14, 421–465 (2000)

21. Larsen, G.: Model-driven development: Assets and reuse. IBM Systems Journal 45,
541–553 (2006)

22. Legner, C., Wende, K.: Towards an Excellence Framework for Business Interoper-
ability. In: 19th Bled eConference ”eValues”, Slovenia (2006)

23. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process man-
agement. IBM Systems Journal 41, 198–211 (2002)

24. Malone, T.W.: Modeling Coordination in Organizations and Markets. Management
Science 33, 1317–1332 (1987)

25. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on our
Capacity for Processing Information. The Psychological Review 63, 81–97 (1956)

26. OASIS: Web Services Business Process Execution Language Version 2.0. wsbpel-
primer (2007)

27. OMG: Business Process Definition MetaModel (BPDM), final submission.
bmi/2006-11-03 (2006)

28. Roser, S.: Designing and Enacting Cross-organisational Business Processes: A
Model-driven, Ontology-based Approach. PhD thesis, University of Augsburg,
(2008)(forthcoming)

29. Saaty, T.L.: Decision Making for Leaders. 3rd edn., RWS Publications (1999)
30. Saaty, T.L.: How to make a decision: The Analytic Hierarchy Process. Interfaces 24,

19–43 (1994)
31. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
32. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Com-

puter 39, 25–31 (2006)
33. Singh, M., Huhns, M.: Service Oriented Computing: Semantics, Processes, Agents.

John Wiley & Sons, Chichester, West Sussex, UK (2005)
34. Snow, C.C., Miles, R.E., Coleman, H.J.: Managing 21st Century Network Organi-

zations. Organizational Dynamics 20, 5–20 (1992)
35. Stäber, F., Sobrito, G., Müller, J., Bartlang, U., Friese, T.: Interoperability

challenges and solutions in Automotive Collaborative Product Development. In:
Gonçalves, R., Müller, J., Mertins, K., Zelm, M. (eds.) Enterprise Interoperability
II: New Challenges and Approaches, pp. 709–720. Springer, Heidelberg (2007)

36. Strassmann, P.A.: Is Outsourcing Profitable? In: Lecture at George Mason Univer-
sity (2006)

37. Williamson, O.E.: Markets and Hierarchies: Analysis and Antitrust Implications.
Free Press, New York (1975)

38. Williamson, O.E.: Transaction Cost Economics. In: Handbook of Industrial Orga-
nization, vol. 1, pp. 135–182 (1989)

The Goal Oriented Teams (GORITE) Framework

Ralph Rönnquist

Intendico Pty Ltd
Melbourne, Australia

Abstract. Goal Oriented Teams (GORITE) is a Java framework for
implementation of Goal Oriented Process Models in a Team Oriented
Paradigm. The GORITE concept combines a Team Oriented view of
software systems with Goal Oriented process modelling, and offers an
effective approach to complex and large-scale software. A Java developer
would use GORITE for implementing their Team Oriented design, and
whilst the framework makes this a straight-forward task, it relies on the
Java developer utilising background skills in Team and Goal Oriented
Programming to form the design. The Goal Oriented Programming side
of GORITE provides a BDI (Belief - Desire - Intention) style execu-
tion machinery for goal oriented process models. Technically the goal
hierarchies, which define how goals are achieved by means of achieving
sub goals, are data structures that are interpreted in order to carry out
the process steps that achieving the goals require. The Team Oriented
Programming paradigm takes systems design to a new level. As design
concept it extends the Agent Oriented Programming paradigm by in-
cluding explicit modelling of the organisation of agents that comprise
an application, whilst allowing for openness in actual composition. This
paper is a presentation of the GORITE framework, with a primary fo-
cus on illustrating how the GORITE elements are used for capturing
Goal Oriented Teams designs, and with less focus on the methodological
philosophy underpinning this style of programming.

1 Introduction

This is a “white paper” on the Goal Oriented Teams (GORITE) framework. We
present the framework in fair detail, and we describe how a developer must think
in order to make best use of the framework. The start-point and general argument
for considering to use GORITE is that it reduces the difficulty in programming a
complex system, which it does by perpetuating the Team Programming analogy,
that the software mimics the work of a human organisation.

The GORITE emphasis is that of developing a software system with complex
behaviour by using the analogy to human organisation as a design technique,
and thus form a software architecture that in concept is based on autonomous
organisational units. But in the software, as opposed to a human organisation,
the autonomous reasoning is represented and carried out at all levels. Through
this, the system behaviour is designed at all levels, and although the behaviour

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 27–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 R. Rönnquist

may be too complex to predict, it is engineered behaviour with a high degree of
repeatability, which brings significant gains in terms of performance, simplicity
and maintainability of the software.

In [3], Horling et al makes the point that “real-time control has become increas-
ingly important as technologies are moved from the lab into real world situations.
The complexity associated with these systems increases as control and autonomy
are distributed, due to such issues as precedence constraints, shared resources,
and the lack of a complete and consistent world view.” For instance, as discussed
by Landre et al in [5], the complexity of the problems call for solutions that can
provide delegated autonomy at the architectural level, which is the essence in
Team Programming.

As noted by Kaminka et al in [2], one can separate team work from task work,
and provide domain independent support for team work at an architectural level,
using team work models. This may be pursued at an agent level, resulting in rea-
soning components aimed at making agents participate effectively in teams. In
this context however, GORITE is similar to the JACK framework [4], in repre-
senting teams as concrete entities that are attributed with reasoned behaviour.
It means to apply an organisation-oriented engineering perspective, similar to
[6], and use team work models to model autonomous organisational units.

A Java developer would use GORITE for implementing their Team Oriented
design, and whilst the framework makes this a straight-forward task, it relies on
utilising background skills in Team and Goal Oriented Programming. In this pa-
per we discuss the central concepts of this paradigm in terms of their realisations
as GORITE elements.

– The Goal Oriented Programming side of GORITE provides a BDI [1] (Belief
- Desire - Intention) execution machinery for goal oriented process models.
Technically the programming is done by creating goal hierarchies, which
define how goals are achieved by means of achieving sub goals, and these are
data structures that are interpreted in order to carry out the process steps
that achieving the goals require.

– The Team Oriented Programming side of GORITE is based on the notion
that a software system is conceived as an organisation of cooperating agents,
or recursively, as a team of sub teams, which operate together so as to provide
the system function. There is a loose analogy with human organisations in
this, such that the overall functions are understood as the fruits of (business)
processes that coordinate the efforts of the individuals. In the Team Oriented
design, the behaviour of organisational units are defined separately from the
behaviour of their sub units. Unit behaviour is expressed as an orchestration
of the services that sub units provide.

The overall design stance is an organisation oriented engineering perspective:
At first we regard the system as a whole as a performer although comprised of
sub units, and we design a top layer of system processes that coordinate efforts
of the organisational sub units. Thereafter we focus on each sub unit in turn,

The Goal Oriented Teams (GORITE) Framework 29

regard it a performer although comprised of sub units, and design its processes
that coordinate efforts of its sub units, and so forth.

The GORITE framework simply maps this perspective onto Goal Oriented
Team Programming: A team is an organisational unit, which operates auto-
nomously according to its defined business processes in order to fill its function
as sub unit of a larger team. In other words, a team is a performer for the larger
team (or teams) it belongs to, while its own behaviour typically is defined as
a coordination of the performer it consists of. The team concept is recursive in
this way; that a team consists of sub teams. From the “above”, the team is seen
as a performer in itself, and from “below” it has members that are performers.

The layout of this paper is as follows: In section 2, we introduce the GORITE
elements by means of an expanded example. In section 3, we look at the execu-
tion machinery in more detail, and follow the single-thread execution through
multiple, concurrent chains of reasoning. Section 4 contains some concluding
remarks.

2 GORITE Example

This example has been called the “Hello World” application for Team Program-
ming. It is a toy application to simulate a spacecraft with Martians flying to
Earth to greet the Earthlings. A Martian spacecraft is flown in a particular way,
which requires a pilot to fly the spacecraft and a crew to look out for the desti-
nation. When “at the destination” is reported by the crew, the pilot stops flying,
and a Martian who is selected for the greeter role, greets the Earthlings.

The point is that the advantage with Team Programming only shows up if
there is some complexity to the problem, and in particular, it requires some small
amount of organisational structure in order for the team concept to make good
sense. Although the example is quite artificial, we can find a number of similar
more serious applications. For example, without straining things too much, this
kind of application could be a mobile data collector for a sensor network. Such
a unit would include similar kinds of separate functions, to deal with mobility,
sensing and mission objective in an effective orchestration. Of course in that
case the modelling might not stop at the data collection units, but extend across
the sensor network, with, perhaps, sensors organised according to geography,
function, data etc., and more complex organisation dynamics.

For the “Hello World” example, we draw up the central process model in
GORITE for a "visit a planet" goal through a code snippet like the one below.
A reader not quite familiar with Java might still make some sense from the
code by knowing that the phrase form “new Goal [] { A, B, ... }” simply means
an aggregate (an array) of goals A, B, etc. The code snippet, which is actual
GORITE code, shows a Java statement using GORITE elements to represent the
process model of how to achieve the specified "visit a planet" goal. It is a Goal
Oriented process model expressed as a goal hierarchy where a goal is achieved
by means of achieving sub goals.

30 R. Rönnquist

addGoal(new Goal("visit a planet", Sequence, new Goal [] {
new Goal("fly to destination", Parallel, new Goal [] {

new Goal("pilot", "fly spacecraft"),
new Goal("arrived", Control, new Goal [] {

new Goal("crew", "look out")
})

}),
new Goal("greeter", "greet")

}));

The goal hierarchy is formed by using Goal objects, where the top and in-
ner hierarchy nodes represent composite goals that are achieved by means of
achieving their sub goals in certain ways. In the snippet above, the top level goal
"visit a planet", has two sub goals, "fly to destination" and for the "greeter"
to "greet", to be achieved in sequence. The first of them, "fly to destination",
has two parallel sub goals: for the "pilot" to "fly spacecraft", and the "arrived"
goal of ending "fly to destination" with success when the "look out" goal per-
formed by "crew" succeeds. (The Control type goal has process model semantics
beyond success and failure, namely, to force an enclosing parallel goal execution
to succeed. See section 3 for details)

The leaf level nodes in a goal hierarchy are task goals with respect to the
modelled process. This simply means that they are defined elsewhere and not
within the process model at hand. The leaf goals in the code snippet refer to
organisational roles, and they declare that the fillers of the indicated roles should
achieve the indicated goals; when the process model is executed and the role filler
goals arise, the role fillers are free to chose their methods to achieve their goals,
which they do by referring to their own capabilities.

In words, the "visit a planet" process model is set out as follows:

1. First the Performer that fills the "pilot" role is asked to achieve a "fly space-
craft" goal, and in parallel, the Performer that fills the "crew" role is asked
to fill the "look out" goal.

2. Eventually, when the "crew" "look out" goal succeeds, the "pilot" "fly space-
craft" goal is interrupted, and the "fly to destination" succeeds.

3. Then the Performer that fills the "greeter" role is asked to achieve the "greet"
goal.

4. When all is achieved in that way, then the "visit a planet" goal has been
achieved.

The word Performer is highlighted because it names the GORITE class that is
used for representing the entities that fill roles and have capabilities to achieve
goals. There is a Team class and a Performer class, both of which are used to,
in an object oriented way, define the organisational potential, i.e. the types of
entities that the desired organisation involves. The particular organisation is
formed by instantiating the appropriate organisational units, and link them into
the organisational structure. Conceptually, a Team is an organisational unit that
may have sub units, and it is also a Performer, which is an organisational unit
that may be a sub unit.

The Goal Oriented Teams (GORITE) Framework 31

2.1 A SpaceCraft Team

Organisational modelling in GORITE has five aspects: two aspects that concern
the organisational potential or which types of entities an application make use
of, and three aspects that concern the actual formation and deployment of per-
formers for performing goals. This section and the next illustrate these aspects
for the example application.

For our example, we are looking a defining a SpaceCraft Team type with a
"flight staff" TaskTeam to deploy for the "visit a planet" goal. The code snippet
below outlines the SpaceCraft Team type definition. It defines SpaceCraft as a
type of Team, which when created, is set up with a "flight staff" TaskTeam that
consists of "pilot", "crew" and "greeter" roles, and a process model for achieving
a "visit a planet" goal.

public class SpaceCraft extends Team {
public SpaceCraft(String name) {

super(name);
setTaskTeam("flight staff", new TaskTeam() {{

new Role("greeter", new String [] { "greet" }),
new Role("pilot", new String [] { "fly spacecraft" }),
new Role("crew", new String [] { "look out" })

}});
addGoal(new Goal("visit a planet", Sequence, new Goal [] {

deploy("flight staff"),
new Goal("fly to destination", Parallel, new Goal [] {

new Goal("pilot", "fly spacecraft"),
new Goal("arrived", Control, new Goal [] {

new Goal("crew", "look out")
})

}),
new Goal("greeter", "greet")

}));
}

}

We note that the "visit a planet" goal hierarchy includes the initial step
to deploy the "flight staff" task team for performing the goal. This additional
step establishes which particular performers of the team to use for the particular
execution; it dynamically defines the local meaning of the role references "pilot",
"crew" and "greeter" in the goal execution.

The types of entities to define include the Team and Performer extensions
that represent the organisational unit types. Further it includes defining which
groups of roles a team has, to deploy for performing its goals. This is called task
team, and is represented by a TaskTeam class, which is instantiated and filled
with Role objects in order to represent a role group in a Team. Depending on
the complexity of a Team, there will be one or more TaskTeam definitions, and

32 R. Rönnquist

these may be declared up front or be formed dynamically to deploy for particular
goals.

As shown in the code snippet, the "flight staff" TaskTeam includes three roles,
and each role is defined to require a filler of a particular ability in terms of
goals. Thus, to fill the "pilot" role, a performer must be able to achieve the "fly
spacecraft" goal, the "crew" role requires the "look out" goal and the "greeter"
must be able to "greet". This is an interface declaration that links the "visit a
planet" orchestration with the particular abilities it exercises of its performers.

We note that the code snippet is a complete definition of the SpaceCraft Team
type. The example application needs to create one instance of this type for
representing one particular spacecraft, and it needs to ask that spacecraft to
achieve a "visit a plant" goal.

2.2 Defining the Martians

The SpaceCraft Team is attributed with an orchestration plan to achieve the
"visit a plant" goal by means of coordinating the Martians in the roles of "pilot",
"crew" and "greeter". To this end, the Martians need to be able to perform the
functions their roles require.

GORITE includes a Capability class that is used for composing abilities into
functional units. For this example, we invent the capabilities SpaceCraftFlying,
SpaceGazing and Greeting to cater for the required abilities of the three roles. The
following code snippet presents a simple Greeting capability definition, where the
"greet" goal is defined as a task goal that is achieved by means of making a line
of console output.

The code snippet is also an illustration of the transition from GORITE goal
processing to application Java code, which is done by means of re-implementing
the “execute” method of the Goal class. We discuss goal processing in more detail
later in section 3.

public class Greeting extends Capability {
public Greeting() {

addGoal(new Goal("greet") {
public States execute(Data d) {

System.out.println("Hello " + d.getValue("destination"));
return PASSED;

}
}));

}
}

The Greeting Capability above is quite simple. In general a capability may
include any number of goal hierarchies of any complexity as well as sub capabil-
ities of any complexity, and further, as a Java class, it may include any methods
and members that might be needed in order to implement the desired function
or functions. Generally speaking, this is where the functional design gets mapped

The Goal Oriented Teams (GORITE) Framework 33

into implementation concepts, which at the end of the day is a collection of
capability type definitions. (Capabilities may also be built dynamically, in which
case they exist as particular un-named competences rather than types)

Continuing the example, the reader may imagine the three capabilities Space-
CraftFlying, SpaceGazing and Greeting being properly defined. If we then would
be short of time, we could use them to create an application in the following
way.

public class Main {
public static void main(String [] args) {

Team t = new SpaceCraft("explorer");
t.addPerformers(new Performer [] {

new Performer("ralph") {{
addCapability(new SpaceCraftFlying()); }},

new Performer("dennis") {{
addCapability(new SpaceGazing()); }},

new Performer("jacquie") {{
addCapability(new Greeting()); }}

});
...

}
}

By that code snippet, which is an application “main” method, three individual
performers with individual capabilities are created, and these are added to the
"explorer" SpaceCraft. (The ellipsis indicates that there is some code omitted,
which includes asking the team to perform the "visit a planet" goal). The three
performers are set up as members of the SpaceCraft Team, and these are the
ones considered for populating the "flight staff" TaskTeam, where they will be
selected to fill roles on the basis of their abilities.

An alternative, more well-designed approach is to define a Martian Performer
type, as illustrated by the following code snippet.

public class Martian extends Performer {
public Martian(String name) {

super(name);
addCapability(new SpaceCraftFlying());
addCapability(new SpaceGazing());
addCapability(new Greeting());

}
}

In that definition, a Martian type is introduced as a well-trained Performer
that can take on any of the three "flight staff" roles. The corresponding appli-
cation “main” method would create and add Martian instances to the "explorer"
SpaceCraft Team. This is illustrated in the following code snippet.

34 R. Rönnquist

public class Main {
public static void main(String [] args) {

Team t = new SpaceCraft("explorer");
t.addPerformers(new Performer [] {

new Martian("ralph"),
new Martian("dennis"),
new Martian("jacquie")

});
...

}
}

We note that in the second modelling alternative, the "flight staff" TaskTeam
can be populated in many different ways; any Martian can perform any of the
roles. Though, by the default population method, the roles will be filled distinctly
by different performers.

2.3 Organisational Modelling Notes

As noted above, the GORITE Organisational Modelling involves five aspects,
which are:

– to define types of organisational units, which is done by defining Java classes
that extend Team or Performer;

– to define groups of roles, or task teams, within teams, which is done by using
the TaskTeam and Role classes;

– to build the organisational structure, which is done by adding performers to
teams;

– to populate task teams, which as in the example, may be done by utilising
the default task team population function, or it may be done be explicitly
declaring performers to fill roles; and finally,

– to establish the role fillers in goals being performed, which as in the example,
may be done be means of the “deploy” utility method.

Only the first aspect is strictly a compile-time definition in GORITE, while the
other four are made in run-time structures, and the last aspect in particular,
which is to deploy a particular task team to achieve a particular goal, typically
occurs as part of that goal processing. The diagram below presents a concept
map for GORITE with respect to organisational modelling:

Team

RoleFilling

Role

Performer

Capability

Capability

Goal

TaskTeam

has

has has

has

has

is−a

is−a

is−a

is−a has

Goal

has
has

The Goal Oriented Teams (GORITE) Framework 35

The RoleFilling class is generally not used explicitly, but indirectly as part of
populating a TaskTeam, where it represents an individual role filling. We note
that role filling includes the notion of multi-filled role, where there are multiple
fillers to a role. In that case, the fillers are treated as one in the eyes of the
team, and goals directed to the role are achieved by all fillers in parallel. This is
discussed further in section 3.1.

The right-hand side of the concept map above shows how the organisational
modelling ties in with the process modelling by virtue of the organisational units
being capabilities, i.e. having methods for achieving goals. In that way each unit
contains the process models by which it operates.

This manner of software design applies an analogy to a human organisation,
using the concept of team to represent an organisational unit that on the one
hand is regarded as a performer in processes spanning multiple units, and on the
other hand achieves its goals through its internal coordination of its sub units.

3 GORITE Goal Processing

Teams, performers and roles are attributed with plans of how to achieve goals.
These are expressed as goal hierarchies that define how goals are composed of
sub goals, and a typical design combines goal hierarchies into capabilities as a
way of structuring the software. In GORITE, a team is a performer, and there is
a common execution machinery for goal processing regardless of whether goals
are team goals or performer goals. A role is a capability that augments a team
with protocol plans that are focused on a particular role filling.

The process modelling of GORITE is Goal Oriented, which means that pro-
cessing is casted in terms of achieving goals. Thus, the process models for a team
are like statements or paragraphs that explain how the team achieves its goals by
means of achieving sub goals and performing tasks. At some points in the goal hi-
erarchy, sub goals are deferred to team members, which deploy their own processes
to achieve these goals. The team level process is primarily concerned with the co-
ordination of member activity rather than how the detailed tasks are performed.

In practice, a goal hierarchy is created by instantiating Goal objects, and then
for each goal tell its name, its type, and its sub-goals. The goal name is that
which identifies the goal. The names of the inner nodes of a goal hierarchy are
not semantically significant, whereas the top level name identifies which goal
a hierarchy achieves, and the leaf goal names of BDI type goals identify which
goals to look up methods for. The goal type declares how a goal is processed, and
ties a particular execution semantics to the goal. Inner nodes of a goal hierarchy
have types Sequence, Parallel, Condition, Loop, Repeat, End, Control or Fail, and
leaf nodes have types Task or BDI. By combining the different types of goals,
one can express any kind of procedural semantics in a goal hierarchy, which thus
constitutes a plan for reasoned behaviour.

The detailed execution semantics for the various types of goals are as follows.

Sequence. A Sequence goal is achieved by achieving its sub goals one by one in
sequence, and it fails immediately when a sub goal fails.

36 R. Rönnquist

Condition. A Condition goal is achieved by attempting to achieve its sub goals
one by one in sequence and succeed immediately when a sub goal succeeds.
The Condition goal fails if all its sub goals fail.

Fail. A Fail goal is achieved by attempting to achieve its sub goals one by one
in sequence, and succeed immediately when a sub goal fails. The Fail goal
fails if all its sub goals succeed.

Loop. A Loop goal is achieved by repeating its sub goals as a Sequence goal
again and again until somewhere in a sub goal hierarchy an End goal breaks
the loop. The Loop goal fails immediately if a sub goal fails, and it succeeds
when an inner End goal breaks the loop.

End. An End goal has a loop control semantics in addition to normal success
and failure. If all its sub goals succeed when attempted one by one in se-
quence, like a Sequence goal, then the End goal breaks an enclosing Loop
goal. Otherwise, when a sub goal fails, then the End goal succeeds without
breaking the loop. An End goal never fails.

Parallel. A Parallel goal is achieved by achieving its sub goals in parallel, and it
fails immediately when a sub goal fails. Further, if a sub goal fails, all other
sub goals are cancelled.

Repeat. A Repeat goal is achieved in the same way as a Sequence goal, but by
instantiating it over a multi-valued data element, so that each instantiation
gets a separate data context focusing on one of the values for that data ele-
ment. The instantiations are processed as parallel branches, and the Repeat
goal succeeds when all branches have succeeded. If a branch fails, then the
Repeat goal fails, and all other branches are cancelled.

Control. A Control goal has a control semantics similar to End goal, but for
parallel goal executions. Its sub goals are performed in sequence, and if all
succeed, then the Control goal causes the enclosing parallel execution to
cancel all branches and succeed. The parallel executions include the Parallel
goal, the Repeat goal and the implicit parallel branches of a multi-filled role.

Task. A Task goal is achieved by referring to its “execute” method, which con-
tains Java code, and returns an execution state, which is one of PASSED,
FAILED, STOPPED or BLOCKED.

BDI. A BDI goal is processed in a more complex way that implements the BDI
plan selection and re-posting on failure. Generally a BDI goal is achieved by
selecting a goal hierarchy for the nominated goal and achieve that, and it
fails if all alternatives fail.

The goal hierarchies that represent process models for achieving a BDI goal are
also called plans, and a BDI goal is achieved by means of trying all the alternative
plans one by one until one succeeds. The GORITE Plan class extends the Goal
class to allow a context predicate that identifies instantiation variants of a plan
relating to the situation at hand, and a precedence value that guides the selection
of which alternative to try next. The instantiation variants arise by the context
predicate being true for different combinations of bindings for the variables in-
volved, and each such combination of bindings defines an applicable variant
of the plan. The precedence value is then used to partially order alternatives,

The Goal Oriented Teams (GORITE) Framework 37

and allow programmed control of the order to try the alternatives in. This is
discussed further in section 3.3.

3.1 Coordination Goals

Team plans involve coordination goals, which are BDI goals that refer to roles.
An ordinary BDI goal, i.e., without a role, is a goal for the current performer,
whereas a coordination goal, i.e., a BDI goal that nominates a role, is a goal for
the fillers of that role. The "visit a planet" example in section 2 is a team plan
with such coordination goals.

The GORITE role filling concept includes a protocol layer where plans are
attributed to roles. Such plans are used to handle coordination goals, and are
performed by the team with a focus on a particular role filling. These plans
typically define meta-level team activity related to a role filler activity such as
monitoring the performer progress relative to other performers, and perhaps
make amendment notes to the performer.

The following is a code example where the "crew" role filling is changed so
that the performer goal merely means to look out for the next planet, while the
decision step to determine whether that planet is the destination, is attributed
to the Role object:

new Role("crew", new String [] { "look for next planet" }) {{
addGoal(new Goal("look out", Loop, new Goal [] {

new Goal("crew", "look for next planet"),
new Goal("end if destination", End, new Goal [] {

new Goal("is destination?") {
public States execute(Data d) {

if (d.getValue("planet").equals(d.getValue("destination")))
return PASSED;

return FAILED;
}

}
})

}));
}}

By the revised code, the "crew" filler is unaware about the longer term role
objective of finding a particular planet, and it merely keeps achieving the simpler
goal to be on look-out for the next planet. The simpler goal involves naming the
planet in the data element "planet", before succeeding. However the team keeps
asking the "crew" to "look for next planet" until the destination is reached.

The snippet above illustrates a plan attributed to a role as way of augmenting
a performer ability into a compound activity, and lift out the decision making
step to be a team level reasoning step; it’s not for the "crew" to decide that the
destination is reached.

A semantically more complex variation would be to make the decision step a
responsibility of the "greeter" role, in which case the "crew" plan would refer

38 R. Rönnquist

to the "greeter" role to achieve the "is destination?" goal. The notion might be
extended further into a design where we embed all the "visit a planet" coor-
dination within role plans. For instance, we might say that "visit a planet" is
something a "greeter" does, within the context of the task team. It then will ask
the "pilot" role to "fly to destination", and this, as before, requires a "crew" to
"look out". We might end up with the following definition of the "flight staff"
TaskTeam:

setTaskTeam("flight staff", new TaskTeam() {{
addRole(new Role("greeter", new String [] {"greet", "is destination?"}) {{

addGoal(new Goal("visit a planet", Sequence, new Goal [] {
new Goal("pilot", "fly to destination"),
new Goal("greeter", "greet")

}));
}});
addRole(new Role("pilot", new String [] { "fly spacecraft" }) {{

addGoal(new Goal("fly to destination", Parallel, new Goal [] {
new Goal("pilot", "fly spacecraft"),
new Goal("arrive", Control, new Goal [] {

new Goal("crew", "look out")
})

}));
}});
addRole(new Role("crew", new String [] { "look for next planet" }) {{

addGoal(new Goal("look out", Control, new Goal [] {
new Goal("look for destination", Loop, new Goal [] {

new Goal("crew", "look for next planet"),
new Goal("end if destination", End, new Goal [] {

new Goal("greeter", "is destination?")
})

})
}));

}});
}});

For the sake of example, we have made an additional Control goal wrapping
in the "crew" "look out" goal. This is done in order to cater for multiple "crew"
fillers, where any one of them will make the "look out" goal to succeed. If there
are multiple "crew", then the "look out" goal is instantiated for each "crew" filler
in parallel, and unless there is a Control goal that force this parallel execution to
succeed, it will be waiting for all the fillers to succeed before "look out" succeeds.

With that task team, the team’s "visit a planet" goal would simply be to defer
the goal to the "greeter" role.

The alternative design solutions provide very similar dynamic behaviour, ex-
cept in light of multi-filled roles. If, for instance, there would be multiple fillers of
the "greeter" role, then the second alternative would have a possibly unwanted
effect of directing the "pilot" role to "fly to destination" many times in parallel.

The Goal Oriented Teams (GORITE) Framework 39

3.2 Dynamic Data Context

Goals are performed with respect to both a lexical belief context and a dynamic
data context, where the latter is a data structure created specifically for the
individual goal execution. The dynamic data context is provided to support a
business process modelling perspective, where in particular the task goals are
seen to use and produce dynamic data. The lexical belief context supports the
agent perspective of goal processing, allowing goals to use and update beliefs of
more long-term persistence.

The dynamic data context is a collection of named data elements, where a data
element carries a single value or multiple values. The data context is shared along
an intention, but is split up to provide local data contexts for parallel intentions.
When parallel intentions join, their local data contexts are joined into the parent
context.

For example, consider the following goal hierarchy, which implements a con-
tract net auction:

// In: RFQ, bidder*, Out: winner
addGoal(new Goal("hold auction", Sequence, new Goal [] {

// In: RFQ, bidder*, Out: bid*
new Goal("bidder", "request bid"),
// In: bid*, Out: winner
new Goal("select winner", BDI),
// In: bidder*, winner, Out:
new Goal("bidder", "tell winner")

}));

The code snippet includes comments with details about the data used and
produced by goals. These note that the incoming data context for the "hold ac-
tion" goal has an "RFQ" data element with a value describing what is auctioned,
and role "bidder" established with multiple fillers. The asterisk, “*”, is used to
indicate a multi-valued data item.

With multiple fillers for the "bidder" role, the first goal, "request bid", causes
parallel intentions for each "bidder" to perform the "request bid" goal, each in
their own way. A "bidder" eventually makes a response by means of defining a
"bid" data element in the dynamic context. When all "bidder" intentions have
completed, the parallel "bid" values are aggregated into a multi-valued "bid"
data element, which is available to the next goal, "select winner". The "select
winner" goal is a BDI goal for the team itself, and its outcome is a setting of the
"winner" data element. This is followed by the third goal, "tell winner", which
is directed to the "bidder" role and again gets repeated for each "bidder" role
filler in parallel.

The dynamic data context prior to an intention split is shared between the
parallel intentions, and the updates made on any one of the parallel branches
only affects its own local data context. However, parallel intentions can interact
by referring to, and update, values of the shared part.

40 R. Rönnquist

3.3 Belief Structures and Context Predicates

Plans in GORITE have context predicates by which plan applicability is de-
termined. In code, a context predicate is a data structure that represents the
logical predicate as a relational query that provides a succession of bindings to
the logical variables involved. This part of the framework includes a Ref class
to represent logical variables, and a Query interface representing the abstract
predicate. The Query interface is implemented by classes that represent expres-
sion forms, in particular the conjunctive and disjunctive forms, And and Or, and
variable distinction, Distinct. Further, there is a Relation class that can be used
for representing primitive terms, where a relation may include consistency rules
in the form of “key constraints”.

Conceptually a context predicate defines the required situation or situations
in which a plan is applicable. Each way in which the predicate is true in terms of
the bindings to the logical variables, defines a dynamic context variant for plan
execution. The following code outline is an illustration:

Relation lamps = new Relation("lamps", String.class, Boolean.class).
addConstraint(true, false);

...
addGoal(new Plan("more light", Sequence, new Goal [] {

// The Data for the sub goals will include a "lamp" data element
new Goal(..........

}) {
public Query context(Data d) {

Ref<String> $lamp = new Ref<String>("lamp");
return lamps.get($lamp, false); // Some lamp being off

}
}

The first two code lines in the outline above defines a relation called "lamps",
which would be a belief structure that holds the performer’s beliefs about lamps
being on or off. The relation is set up with a key constraint where the first
column is a key field and the second a value field; i.e., the relation is designed to
hold a single on/off state value for any lamp. Key constraints are applied when
tuples are added to the relation, such that when the added tuple is in conflict
with an old tuple by any key constraint, then the old tuple is removed.

The "more light" plan is supposed to achieve its goal by turning on a lamp
that is off. To this end it includes a context predicate to recognise lamps being
off, and consequently the plan has an instantiation variant for each such lamp.
If all lamps are on already, then the plan is not applicable at all, and otherwise
there is a variant for each lamp being off. The variants are all the same in terms
of goal instantiation, but their executions differ in their dynamic context, where
each variant has its own value for the "lamp" data element.

The diagram below is an expanded GORITE concept map, including the Plan
concept of the process modelling perspective. As noted above, a GORITE Plan is
a Goal augmented with a context predicate, which defines the plan’s applicability

The Goal Oriented Teams (GORITE) Framework 41

with respect to the performer’s situated beliefs. Technically a belief structure is
a data structure of some kind; perhaps a Relation or perhaps some other Java
structure. The context predicate is a Query that defines a predicate abstraction
for accessing individual beliefs regardless of the underlying representation.

Team

RoleFilling

Role

Performer

Capability

Capability

Goal

TaskTeam

has

has has

has

has

is−a

is−a

is−a

is−a has

Goal

has
has

is−a

has

has

Context

Plan Precedence

Query

is−a

4 Conclusion

In this paper, we have presented the Goal Oriented Teams (GORITE) framework
through an expanded example, and we have discussed its BDI style goal execu-
tion machinery in some detail. The framework is aimed at the Java programmer
by providing a small set of programming elements, classes and interfaces, for
implementing Goal Oriented Teams designs in Java, and it does not include
and special design or development tool. The purpose behind that is to offer the
Team Programming view and concepts dressed up in a standard Java solution,
and thereby make the benefits of the paradigm accessible to a wider audience.

References

1. Rao, A., Georgeff, M.: Decision Procedures for BDI Logics. Journal of Logic and
Computation 8(3), 293–342 (1998)

2. Kaminka, G., Yakir, A., Erusalichik, D., Cohen-Niv, N.: Towards Collaborative Task
and Team Maintenance. In: AAMAS 2007 (2007)

3. Horling, B., Lesser, V., Vincent, R., Wagner, T.: The Soft Real-Time Agent Control
Architecture. In: Autonomous Agents and Multi-Agent Systems, vol. 12(1), pp. 35–
92. Springer, Heidelberg (2006)

4. JACK Intelligent Agents, http://www.agent-software.com
5. Landre, E., Olmheim, J., Waersland, G., Ronneberg, H.: Software Agents - An Emer-

gent Software Technology That Enables Us To Build More Dynamic, Adaptable, and
Robust Systems. In: ACTE 2006 (2006)

6. Kollingbaum, M., Norman, T., Mehandjiev, N., Brown, K.: Engineering
Organisation-Oriented Software. In: WISER 2006, Proceedings of the 2nd Interna-
tional Workshop on Interdisciplinary Software Engineering Research, ICSE, Shang-
hai, China (May 2006)

http://www.agent-software.com

Agents Do It for Money - Accounting Features

in Agents

Jan Keiser, Benjamin Hirsch, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin, Germany
{Jan.Keiser,Benjamin.Hirsch,Sahin.Albayrak}@dai-labor.de

Abstract. This paper presents a novel way of incorporating accounting
features into agents. Network management techniques and methods are
investigated and adopted to the agent case. We then use an example
to show how sophisticated accounting technologies can be used. The
example has been implemented using the JIAC platform.

1 Introduction

In [1], Jennings et al. famously coined the phrase Objects do it for free, agents do
it for money. While the authors aimed to highlight that agents are autonomous
and therefore can choose to refuse the provision of services, it can nowadays
also be taken quite literally. In fact, according to the AgentLink Roadmap [2],
agent based technology will become a mainstream technology in the next 10
– 15 years. This also includes the commercial use of agents. Currently, agents
are used in commercial settings, but mainly within a closed system, where all
the participating agents belong to the same owner. This however will almost
necessarily change, as agents become more mainstream, and more and more
pervasive network access does not pose roadblocks to using services over the
internet. However, the commercial use of agents within an open architecture can
be difficult because of the distributed nature of agents, as the provided service,
the amount of work being done, as well as the necessary interaction is difficult
to turn into an appropriate cost.

The aim of this work is to enable agents to function within commercial and
open settings while still staying in the agent concepts. In our view, this requires
agent systems to deal with (complex) management issues in general, and ac-
counting in particular. While “standard” approaches concerning accounting and
even communication (via e.g. webservices) are certainly an option, this would
lead to the solutions living outside the agent oriented concepts.

In this paper, we present a method to incorporate accounting features into
agents while staying within the agent paradigm, allowing us to not only mea-
sure usage of agents but also create complex tariff schemes. The accounting
features are based on a general management layer within the agent framework
that is adapted from network management technologies. In network manage-
ment, proved and tested techniques are used to control and manage network
nodes.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 42–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Agents Do It for Money - Accounting Features in Agents 43

While we implemented the techniques in the agent framework JIAC (Java
Intelligent Agent Componentware), the proposed management structure as well
as the accounting features can be applied to other agent frameworks as well.

The rest of this paper is structured as follows. In the next section (Section 2),
we give an overview of management technologies in general and accounting meth-
ods and technologies in particular. Section 3 describes a high-level model of how
agents and management techniques can be combined. We then describe in de-
tail our generic accounting infrastructure which is embedded in this model in
Section 4. Before we go into implementation details, we give an overview over
the agent framework which we used to implement the concepts described in this
paper. We conclude and give an outlook in Section 5.

2 Enterprise Management

Most of today’s technologies for management concern the network layer, and are
based on OSI Management [3]. OSI stands for Open Systems Interconnection,
and has been the basis of standardisation efforts for connecting open systems [4].

OSI Management

OSI management supports the user as well as the provider of communication
services during planning, supervision, and control of system activity. This is
achieved by providing technologies to coordinate, distribute, and assign resources
within the communication network. We can distinguish between three areas of
OSI management, which are systems management, n-layer management, and
n-layer operations (also known as protocol management).

– Systems management includes vertical management activities that concerns
all seven OSI layers, and happens on the application level.

– N-layer-management details functions, services, and protocols for a given
layer N.

– N-layer-operations or protocol management concern techniques for monitor-
ing connections with the given layer.

The ISO working group solely defines management standards for the first cate-
gory, systems management. Here, different standardisation efforts exist, includ-
ing the specification of procedures that offer specific management aspects.

There are also a number of actual implementations of management technolo-
gies. Here, we want to introduce two of them, the second of which is fairly known
even outside enterprise network management.

TMN for telecommunication networks [5] is based on OSI management. It
distinguishes three layers, namely an information architecture, a functional ar-
chitecture, and a physical architecture. Each of the architectures is described
using functional groups, functional components, reference points, and interfaces.
TMN generally supposes a distinct network for the transmission of management
relevant data, though it does allow to use the managed network to transmit data
as well.

44 J. Keiser, B. Hirsch, and S. Albayrak

SNMP [6] is a well-known protocol for network management. While initially
designed as an interim protocol, it has established itself and is currently avail-
able in its third incarnation. It is based on four elements: a management station,
a management agent, a management information base, and a network man-
agement protocol. The first provides the user with management functionality,
while the agent is a purely passive element located in the different managed de-
vices. Manager and agent share a management information base which contains
information about resource administration. SNMP provides three functions to
interact, a namely get, set, and trap. The first two are for (manager initiated)
reading and manipulation of variables defined in the management information
base, while the last allows the managed entity to pro-actively send data to the
managing component. Communication is done via UDP, and is generally routed
over the managed network.

FCAPS

Management procedures are collected under the name FCAPS, which is an ab-
breviation for the five areas of management it covers.

Fault Management concerns all activities relating to the discovery, reaction, and
solution of faults. This includes the definition of classes of failures, monitoring
system behaviour, and the generation and transmission of failure-information.

Configuration Management details the identification, collection, control, provi-
sion, and execution of data which are important for the initialisation, execution,
and adaptation of the system.

Accounting Management deals with the evaluation of services as well as the
definition of rules governing accounting of (a combination of) those services.
Furthermore, processes and data required to do actual accounting, like customer
information and electronic bills are described. It should be noted that accounting
is a necessary requirement for any billing system. It provides information and
administration of communication, computing resources, storage space etc.

Performance Management or quality management concerns two areas. On the
one hand, we have the monitoring of performance parameters such as the num-
ber of messages received or sent, the amount of data transmitted, and reaction
times. Furthermore, it includes the possibility to configure monitored systems in
order to improve performance.

Security Management includes security technologies such as authentication, au-
thorisation, access control, and encryption, as well as the provision of security-
relevant information.

Accounting Management

Most research and development activities of accounting management exist un-
der the name AAA that is an abbreviation of authentication, authorisation and

Agents Do It for Money - Accounting Features in Agents 45

accounting. Accounting management contains the collection of resource con-
sumption data for the purposes of capacity and trend analysis, cost allocation,
auditing and billing [7]. This includes the measurement, rating and assignment
of the consumption data as well as the communication of these data between
appropriate parties.

Most of the proposals, specifications and solutions in the field of account-
ing management consider only the communication layer of applications (e.g.
data transfer and network access) or do not cover further aspects of accounting
such as charging. Simple accounting management architectures and protocols
are specified by ITU-T [8], IETF [7], OMG [9] and M3I [10,11]. Examples for
accounting attributes and record formats are ADIF [12] and IPDR [13].

3 Agents and Management

In the context of agents, accounting has to our knowledge not yet been im-
plemented in a general and re-usable fashion. As argued in the introduction
however it appears that, as agents move more towards open systems, metering
and accounting gains importance.

Rather than focussing on accounting alone and developing an accounting so-
lution from scratch, we base our work on the large body of work that has been
done within the network management community as detailed in the previous
section. In particular, we adopted the FCAPS management structure as a ba-
sis for our accounting implementation. We chose FCAPS for several reasons.
It is a thoroughly tested and established approach which is used widely. Also,
it allows us to extend our framework to provide not only accounting features
but potentially any of the other FCAPS areas such as failure or performance
management.

In the remainder of this section detail how we integrate management func-
tionality in agents. While we have implemented it within a particular agent
framework, we aimed at making the integration general enough to be applied to
most agent frameworks.

Figure 1 shows three layers which occur in a managed agent system. We focus
here on the functional aspects, and make no claim about the physical distribution
of those functionalities. However, most basic mechanisms are generally located
within the single agent. The layers describe on an abstract level the internal
structure of the agents (with respect to manageability), the basic management
techniques, and the abstract FCAPS management areas.

The lowest level details an agent architecture (e.g. a BDI architecture) which
is to be managed. This can be described in terms of communication, knowledge
management, execution, and events. Communication is of course an important
element of a multi-agent system, but is also important from the view of a sin-
gle agent. The low level technologies employed, as well as higher levels such as
ACL’s (e.g. FIPA ACL [14]) and protocols fall under that header. Knowledge
management details the internal state of the agent. Actual computation, manip-
ulation of knowledge, and the behaviour of the agent are based on an execution

46 J. Keiser, B. Hirsch, and S. Albayrak

Fig. 1. Three layer management architecture

engine. Lastly, agents have to have means to communicate changes in their state,
such as the sending and receiving of messages, invoked services, changes in the
knowledge base, plans, and goals etc. The event manager provides an interface
for management components to access those architecture specific events.

The next layer provides basic management mechanisms which build on the
lower level. It works as a wrapper between the management interfaces of the
used agent architecture and the higher-level management functions. Agent in-
trospection provides standardised information about the state of the agent in
terms of the four elements detailed above. Furthermore, the state of the agent
should not only be monitored, but techniques for the manipulation of the in-
ternal state have to be provided. This includes changing the knowledge base,
triggering events, adapting, adding or deleting goals, and changing the execu-
tion state of the agent. Also, abilities of the agent that refer to the infrastructure,
such as migration, termination of the agent, and the (de-) registering of services
(see FIPA Management [15]) have to be manageable. Lastly, any mechanisms
pertaining to persistence of the agent need to be available.

Layer three uses the basic management mechanisms offered in layer two in
order to provide value-added management functions such as fault, configuration,
accounting, performance, and security management as independent from the
actual agent framework as possible. In terms of agent based systems, this would
provide

– detection of faulty or abnormally behaving agents, and providing means to
evaluate and recover from errors occurring in the system;

– configuration mechanisms to adapt the system to new requirements, for ex-
ample by including new features, or replacing old versions of agents with
newer ones in an organised fashion by consideration of dependencies between
modules;

– metering of resources and mapping to services offered by agents, allowing for
a centralised account management and billing mechanisms [7];

Agents Do It for Money - Accounting Features in Agents 47

– quality control, reliability, load balancing mechanisms (possibly based on
information outside the actual agent system) and detection as well as elimi-
nation of bottlenecks;

– secure communication, public key infrastructures, access control for agent
services, and trust relationships between agents and communities (see e.g.
[16,17,18]).

There are two ways of realising above requirements and provide management
technologies to agent frameworks. The first would be to extend the agent frame-
work with one of the management technologies described above. For example,
agents could be extended by adding an SNMP component which provides and
manages data. This would also require the extension of management technologies
to include agent relevant information. Alternatively, one can use the technology
provided by agents themselves to manage the system instead of extending net-
work management mechanisms. Here, existing techniques (such as FIPA com-
munication) can be adapted to reflect management mechanisms.

We have chosen the latter approach, and base management extensions on
FIPA standards.1 This has the advantage of keeping a reasonably homogeneous
system, where the available technologies are used as far as possible. Also, the
nature of agents allows to for example provide management agents which monitor
a set of agents, and which themselves can take advantage of agent technologies
such as flexibility, robustness and intelligent behaviour. Last but not least the
managed agents may keep their level of autonomy, e.g. by allowing them to refuse
management requests which are in conflict to the own goals.

In order to really get a management framework which can be applied to dif-
ferent agent frameworks and which allows the interoperability between different
implementations of this abstract model, several additional requirements should
be met. Layer two mechanisms provide clearly defined services, use FIPA-ACL
as communication language, and support most of the popular content languages
(such as FIPA-SL, KIF[19], and RDF[20]). To this end, FIPA protocols are
used. The Monitoring services use the FIPA Subscribe Interaction Protocol in
order to provide information about events that occurred within the agent (push-
strategy), and the FIPA Query Interaction Protocol to get the current state of
(an element of) the specified agent (pull strategy). Agent control is provided us-
ing the FIPA Request Interaction Protocol, allowing to request specified actions
from the agent.

In order to further detach the actual agent framework from the FCAPS man-
agement layer, ontologies describing the state, events, and agent elements should
be standardised to allow inter-operability of different agents with the manage-
ment framework. It should be noted that the nature of different systems precludes
a set of events and actions that map to all possible events and actions. However,
there is a common subset of events that can be specified. For example, the FIPA
Abstract Architecture is used as basis for standardised events. Furthermore,
many agent frameworks employ some sort of BDI-like architecture, which again
should be abstracted to a set of events including the creation, modification, and
1 The specifications mentioned in this paper can be found at http://www.fipa.org

http://www.fipa.org

48 J. Keiser, B. Hirsch, and S. Albayrak

deletion of beliefs, goals, and plans. Last but not least, events concerning the
life cycle of agents need to be provided. This includes the actual change of an
agent’s life-cycle state, such as creation, deletion, and migration.

Having said that, it should also be noted that using agents to manage systems
can have serious implications on several levels. Most obviously perhaps, man-
agement mechanisms are also needed to control the system when the autonomy
of the agents leads to unpredictable and emergent behaviour that is in conflict
to the intrinsic intention. It seems counter-intuitive to employ agents (which can
behave unexpectedly) to control agents (though, by centralising and providing
means of control, this argument can be countered to a certain extend). Also,
management agents would be highly critical systems, and steps should be taken
to ensure that they can work as reliably and securely as possible.

4 Agents and Accounting

Now that we have detailed how agents and management technologies can be
combined, we describe how this theoretical approach can be applied in the con-
text of accounting. We do this first by providing a scenario which incorporates
accounting features. Using this, we will then describe the accounting architecture
and show how we implemented it in the agent framework JIAC.

4.1 Scenario

In order to make the issue a bit more touchable, we present the following scenario:
A small company provides the online game ”crazy eight”. Several users may

play against each other on virtual tables. Each table is represented by a game
master agent and each player is represented by a human player agent, which also
provides the user interface for the game and the online charge control. To pay for
playing games every registered user has chosen one of the provided tariffs and
decided to get information about the current account. A linear tariff based on the
duration of the game (e.g. one cent per 10 seconds) and a flat-rate (e.g. 20 cents
for a game) are available. The first tariff uses a charging function parameterised
by rate and period and a tariff scheme based on time events.

Additionally to these tariffs the company now wants to provide a new tariff
based on the played cards of the user without changing the implementation of
the game. To do so also the definition of a new tariff scheme is needed that is
based on the associated events.

At this point, we want to take a step back. Firstly, we observe that agents need
to have some sort of introspection, i.e. the ability to know about internals such
as service provisioning, resources consumed, time, and more. This data has to be
made available to other agents, or managing entities. Also, the other direction of
information flow is needed, i.e. the ability of outside agents (or managing entities)
to directly influence the behaviour of the agent, for example the accounting agent
telling the service provisioning agent to cancel the (executing) service if the credit
limit of the user is reached.

Agents Do It for Money - Accounting Features in Agents 49

4.2 Accounting Architecture

Figure 2 shows a generic accounting infrastructure while Figure 3 details the in-
teraction sequence that occurs in the example of Section 4.1. The user agent (e.g.
human player agent) requests application services (a card game service), which
are provided by the managed application provider (the game master agent). The
charging agents use the introspection services described in layer two of the man-
agement model to be informed about start and stop of application services. In
this case, during the initialization or negotiation phase after a charging agent has
received the information about the requested service, he uses a service of the user
management to get the profile of the application service and user. The service
profile contains a list of all supported tariffs or an empty list for non-commercial
services. The user profile contains the valid tariff (as contracted between cus-
tomer and provider) for the given service and user. Afterwards a service of the
tariff management gives the description of the tariff, which is related to a charg-
ing function to calculate the price.

Fig. 2. Roles and interactions during accounting management

Accordingly, also by using the introspection services provided by the applica-
tion provider the charging agent activates only the metering of events relevant
to the charging function of the tariff (e.g. playing a card realised by sending a
data speechact). If one of these events occurs during service provision (i.e. some
state on which the function depends changes) the current price will be calcu-
lated again. As a result of a changed price the accounting rules of the charging
agent may trigger actions, e.g. to stop the service or to inform the user about
the current price by using the manipulation services of the application provider.
If the application service stops, the metering will be deactivated and the final
charge will be calculated. The service provider also plays the role of a customer
if its application provider agents uses services of 3rd-party providers (see dashed
lines of Figure 2).

50 J. Keiser, B. Hirsch, and S. Albayrak

Fig. 3. Sequence chart of the card game scenario where a card-based tariff is chosen
and one card was played

By using the introspection and manipulation mechanism introduced in Sec-
tion 3, the provided services need not be re-implemented for accounting pur-
poses. Furthermore, the possible tariffs are not restricted to just a few bits of
information like service duration or number of access, which have to be decided
upon before bringing the service online. Instead, all events measurable by the
underlying agent framework may be used. Also the charging information about
used subservices of 3rd-party provider may be considered by the tariffs. Some
frameworks (including JIAC) allow even to add new (measurement) components
to agents during run-time. It should be noted that in the case of service chaining
with a revenue sharing model a proper prediction of final charges is very difficult

Agents Do It for Money - Accounting Features in Agents 51

if the number of involved services becomes large and the used tariff schemes are
more complex.

4.3 Accounting in JIAC

We have implemented our accounting approach in and with the FIPA-compliant
agent framework JIAC [21,22]. In the following we will describe the characteris-
tics of this agent framework, before detailing the implementation of accounting.
Note that the implemented management features are partially used in numerous
projects [23,24].

JIAC consists of a run-time environment, a methodology, tools that support
the creation of agents, as well as numerous extensions, such as web-service-
connectivity, an owl-to-Jadl translator and more. An agent consists of a set of
components.

JIAC ’s component model allows to exchange, add, and remove components
during run-time. The components interact among each other by agent internal
messages. Standard components (which themselves can be exchanged as well) in-
clude a fact-base component, execution-component, rule-component, and more
[25]. These components provide individual messages to manage the appropri-
ate actions, e.g. the MonitorGoalMessage executed by the GoalBean allows to
subscribe for changes on the goal stack.

Agents are programmed using the language Jadl [26]. It is based on three-
valued predicate logic [27], thereby providing an open world semantics, and im-
plements an BDI approach. It comprises four main elements: plans elements,
goals, rules, ontologies, and services.

Communication is based on services. A service invocation consists of several
steps, and is based on a meta-protocol, an extension of the FIPA request protocol.
First, the agent contacts the Directory Facilitator (DF) in order to receive a list
of possible services that could fulfil the current goal. After selecting a service
and informing the DF, the agent receives a list of agents providing that service.
Now an optional negotiation protocol can be executed with which the actual
service provider is chosen. Only then is the actual service protocol executed. The
meta protocol handles service-independent elements like security, communication
failures, and other management-related issues.

Now we describe the JIAC -based implementation of the accounting archi-
tecture as part of a comprehensive management framework. Firstly, for layer
two of the management model (see Figure 1) we have implemented management
components providing an consistent interface (within the agent) to the bottom
layer components of the agent architecture described above. This agent internal
interface allows to register or deregister for events matching a specified pattern.
These matched events may be delivered immediately or at regular intervals. The
ontology shown in Figure 4 describes the structure of the managed JIAC -specific
events that need to be monitored for management functionality (e.g. accounting),
such as speech acts, facts, goals, and intentions.

The introspection and manipulation services makes the internal interface
available to other agents. We use priority mechanisms of JIAC to give the

52 J. Keiser, B. Hirsch, and S. Albayrak

Fig. 4. Extensible ontology for the management of JIAC-based agents

management related actions and messages a higher importance than the ap-
plication services. At the moment, we do not consider access controls, or levels
of autonomy. The managed agents always provide all management capabilities
if the managing agent is authorised. Restrictions of actions on specified agent
elements and the ensuring of consistency of management actions with own goals
are future work. Having said that, it should again be noted that the provision of
those interfaces does not mean that agents necessarily loose all their autonomy.
Instead, it is left to the programmer to decide which methods to employ, or how
to react to management requests.

Up to now, standards for the introspection or manipulation of agents do not
exist. But nevertheless to provide interoperability, we plan to implement the
services using the referred FIPA protocols as alternative to the currently used
JIAC meta-protocol. This includes conversion of the content between Jadl and
the standardised languages SL, KIF or RDF, and translations between the dif-
ferent management ontologies (e.g. between the JIAC -management and a more

Fig. 5. Ontology for the description of tariffs

Agents Do It for Money - Accounting Features in Agents 53

general BDI-management). As proof of concept, we have implemented services
for multi-agent infrastructure of the abstract model using FIPA protocols, con-
version of the content to SL and the ontology fipa-agent-management.

Based on these implementations we have realised parts of the management
areas described by the abstract model, such as the accounting infrastructure in-
troduced before. Also, applicable tools for the run-time administration of agents,
user management, and the management of accounting information, including the
creation of tariffs and tariff-schemata, were developed.

(act getSpeechactLinearPrice
(var ?usageId:string ?account:ServiceAccount ?tariff:Tariff)
...
(script

(var ?meteredEvents:class:java.util.HashMap ?events:Event[]
?amount:real ?money:Money ?parameter:LinearParameter
?base:real ?rate:real ?unit:int ?currency:string)

(seq
// get tariff parameters
(eval (att parameter ?tariff ?parameter))
(eval (att currency ?parameter ?currency))
(eval (att base ?parameter ?base))
(eval (att rate ?parameter ?rate))
(eval (att unit ?parameter ?unit))

// get measured events
(getEvents (var ?usageId ?meteredEvents))
(bind ?events (fun getEntry ?meteredEvents "SpeechactFilter"))

// calculate current charge based on number of events
(bind ?amount (fun Real.add ?base (fun Real.mul ?rate

(fun int2real (fun Int.div (fun getLength ?events)
?unit)))))

// update current charge
(bind ?money (obj Money (amount ?amount) (currency ?currency)))
(update (att price ?account ?money))

)
)

)

Fig. 6. Code example for a charging function based on speechact events and linear
parameter

In JIAC tariffs are described using the ontology shown in Figure 5. A tariff
contains a tariff scheme and parameters. To get highest possible flexibility to
define new tariffs, tariff schemes are described by a list of filters for metering
events (see ontology in Figure 4), and the corresponding charging functions are
implemented as plan elements (see example in Figure 6). Because expertise is
needed for the flexible definition of tariff schemes, we have introduced tariff pa-
rameters which enables non-expert service providers to easily adapt the tariffs.
In this example the attributes of the linear parameter are evaluated before read-
ing out the list of metered events that match the speechact filter specified in the
tariff scheme. Afterwards the charged amount is calculated based on the linear
parameter and the length of the event list. Finally, the account will be updated
with the new amount.

54 J. Keiser, B. Hirsch, and S. Albayrak

(obj ReceivedDataSpeechactFilter SpeechactFilter
(EventFilter.name "SpeechactFilter")
(EventFilter.role "de.dailab.management.accounting.role.ControlRole")
(action "received")
(detail "protocol")
(speechacts (obj SpeechactPattern (performative "data")))

)

Fig. 7. An example of a Speechact-Filter

An example of a filter is shown in Figure 7. Here, the speechacts are filtered
based on the performative “data” and the fact that they are received within a
service protocol.

5 Conclusion

In this paper we have described how advanced accounting mechanisms can be
incorporated into agent frameworks. Based on management technologies known
from networking, we have provided a general framework which allows agents to
measure, meter, and bill for services they provide. This grounding allows us to
for example extend the agent frameworks towards other FCAPS areas such as
performance or configuration management.

We have implemented the underlying framework and the accounting infras-
tructure within JIAC, and shown how accounting features can be used in agent
frameworks. As through the use of webservices and the internet in general open
systems are bound to be more and more pervasive, it becomes necessary for agent
frameworks to provide methods to deal with the commercial implications of pro-
viding services to outside entities (as opposed to having an agent framework that
in essence is a distributed application).

Future work includes restrictions of actions on specified agent elements, as well
as ensuring consistency of management actions with the goals of the managed
agents. The extension of the framework to include more FCAPS areas (such as
security and failure) is another direction of future work. It should be noted that
in the end, the different areas cannot be viewed separately as they are often
intertwined. For example, the issue of trust management and its implications
on accounting needs to be investigated in the context of security. Also service
level agreements and their enforcement are important issues that need to be
addressed.

References

1. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1, 275–306 (1998)

2. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology Roadmap
(2005)

Agents Do It for Money - Accounting Features in Agents 55

3. ITU-T: Information technology – Open Systems Interconnection – Systems man-
agement overview. ITU-T Recommendation X.701, ISO/IEC 10040 (1998)

4. ITU-T: Information Technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model. ITU-T Recommendation X.200, ISO/IEC 7498-1 (1994)

5. ITU-T: Principles for a Telecommunications Management Network. ITU-T Rec-
ommendation M.3010 (2000)

6. Case, J., Fedor, M., Schoffstall, M., Davin, J.: A Simple Network Management
Protocol (SNMP). In: RFC 1157, IETF (1990)

7. Aboba, B., Arkko, J., Harrington, D.: Introduction to Accounting Management.
In: RFC 2975, IETF (2000)

8. ITU-T: Information technology – open systems interconnection – systems man-
agement:usage metering function for accounting purposes. Technical report, ITU
Telecommunication Standardization Sector (1995)

9. OMG: Federated charging and rating facility. Technical report, Fraunhofer FOKUS
(2002)

10. M3I-Consortium: Charging and accounting system (cas) design. Technical report,
Market Managed Multi-service Internet Consortium, ETH Zürich (2000)

11. M3I-Consortium: Cas implementation. Technical report, Market Managed Multi-
service Internet Consortium, ETH Zürich (2001)

12. Aboba, B., Lidyard, D.: The accounting data interchange format (adif). Technical
report, IETF (2000)

13. IPDR: Network data management - usage: For ip-based service. Technical report,
IPDR Organisation (2001)

14. FIPA: FIPA ACL Message Structure Specification. FIPA Specification SC00061G
(2002)

15. FIPA: FIPA Agent Management Specification. FIPA Specification SC00023K
(2004)

16. Schmidt, T.: ASITA: Advanced Security Infrastructure for Multi-Agent-
Applications in the Telematic Area. PhD thesis, Technische Universität Berlin
(2002)

17. Bsufka, K.: Public Key Infrastrukturen in Agentenarchitekturen zur Realisierung
dienstbasierter Anwendungen. PhD thesis, Technische Universität Berlin (2006)

18. Bsufka, K., Holst, S., Schmidt, T.: Realization of an Agent-Based Certificate Au-
thority and Key Distribution Center. In: Albayrak, Ş. (ed.) IATA 1999. LNCS
(LNAI), vol. 1699, pp. 113–123. Springer, Heidelberg (1999)

19. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format version 3.0 refer-
ence manual. Technical Report Logic-92-1, Stanford University, Computer Science
Department (1992)

20. Lassila, O., Swick, R.: Resource description framework (rdf) model and syntax
specification. Technical Report WD-rdf-syntax-971002, W3C (1999)

21. Fricke, S., Bsufka, K., Keiser, J., Schmidt, T., Sesseler, R., Albayrak, S.: Agent-
based Telematic Services and Telecom Applications. Communications of the
ACM 44(4), 43–48 (2001)

22. Sesseler, R., Albayrak, S.: Service-ware framework for developing 3g mobile ser-
vices. In: The Sixteenth International Symposium on Computer and Information
Sciences (2001)

23. Albayrak, S., Milosevic, D.: Generic intelligent personal information agent. In:
International Conference on Advances in Internet, Processing, Systems, and Inter-
disciplinary Research (2004)

56 J. Keiser, B. Hirsch, and S. Albayrak

24. Wohltorf, J., Cissée, R., Rieger, A.: BerlinTainment: An agent-based context-aware
entertainment planning system. IEEE Communications Magazine 43(6), 102–109
(2005)

25. Sesseler, R.: Eine modulare Architektur für dienstbasierte Interaktion zwischen
Agenten. PhD thesis, Technische Universität Berlin (2002)

26. Konnerth, T., Hirsch, B., Albayrak, S.: JADL – An Agent Description Language
for Smart Agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 141–155. Springer, Heidelberg (2006)

27. Kleene, S.C.: Introduction to Metamathematics. Wolters-Noordhoff Publishing and
North-Holland Publishing Company (1971) (Written in 1953)

From Norms to Interaction Patterns:

Deriving Protocols for Agent Institutions

Huib Aldewereld, Frank Dignum, and John-Jules Ch. Meyer

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

{huib,dignum,jj}@cs.uu.nl

Abstract. We show how protocols (or interaction patterns) can be de-
rived from norms using landmarks. The resulting protocols can be used
by agents to perform their interactions while being certain to stay within
the norms governing an e-institution without having to have a capability
for normative reasoning. It can also be used by normative agents as a
default protocol to be used, but from which they can deviate in specific
circumstances.

1 Introduction

Agent-mediated institutions (or e-institutions), introduced in [13,14], are open
agent systems that allow heterogeneous agents to enter and perform tasks. The
e-institutions specify the admissible behaviour of the agents by means of norms,
which are declarative and abstract by nature. On the one hand this allows for
a stable specification suitable for almost any conceivable situation that arises
in the institution, but in the other hand the norms hardly give any indication
which interaction patterns would guarantee satisfaction of the norms.

One could aim for the use of normative agents in e-institutions as propagated
in [12]. In this perspective the agents are capable of reasoning about the norms
and planning their actions accordingly. However, it seems not very realistic that
all agents will have this capacity. Most agents will be standard agents that are
only capable to reason about standard protocols as part of their interactions
with other agents. Therefore, in this paper, we aim to provide ways to generate
protocols (on the basis of the normative descriptions) that are guaranteed to
fulfil all norms of the e-institution. Given these protocols agents entering the
e-institution can just follow these protocols and be sure they will always stay
within the “law”. Note that we do not necessarily require the agents to follow
these protocols. They can be seen as available templates for use by the agents.
Agents can still perform normative reasoning if they are capable, but, with the
help of these protocols, they do not need to do that in order to participate in
the e-institution.

Our approach is inspired by how the gap between the normative and procedu-
ral dimensions is bridged in human institutions. Human laws express in a very
abstract way wanted (legal) and unwanted (illegal) states of affairs. Although

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 57–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

legal
illegal

Laws Regulations Practice

+ very expressive
- almost undecidable

+ very efficient
- too restrictive

• expressive
• decidable but not efficient

Fig. 1. Comparison between Laws, Regulations and Practice

laws are very expressive, they do not express how to achieve a given state of
affairs, and therefore they are very hard to use in practice to, e.g., guide each
decision in a process. In practice more efficient representations are needed, such
as protocols or guidelines. In rule-based legal systems (those based in Roman-
Germanic law), regulations add an intermediate level between laws and practice,
by giving some high-level specifications on some constraints about how things
can or cannot be done. These high-level descriptions are therefore interpretations
of the law that add some operational constraints to be met by practice (see fig-
ure 1). Using this idea, we introduce an intermediate level between institutional
norm specifications and institutional protocols based on landmarks in a similar
way as done in [9,3]. The landmarks are further discussed in section 2.

From the norms we will automatically generate finite state automata, using
a technique introduced by Wolper in [17]. This is a general technique to convert
temporal logic formulas in LTL into so-called Büchi automata. The landmark
patterns can be obtained from these automata by looking at their corresponding
recognised languages. This technique is described in section 3. In section 4 we
show how we can compose protocols by strengthening the landmark patterns,
through adding additional information concerning the (presumed) capabilities of
the agents. In section 5 an example of the whole process of generating a protocol
from norms is given. The paper concludes with some observations and future in
research in section 6.

2 Norms and Landmarks

The relevance of landmarks in protocol specification is dictated by the simple ob-
servation that several different actions can bring about the same outcome. Once
the outcomes of actions are organised in a structured description (i.e. a land-
mark pattern), it becomes possible to represent families of protocols abstracting
from the actual transitions by which each protocol is constituted. This makes
landmarks an ideal solution for bridging the gap between the abstract normative
level and the procedural level of protocols. The landmark pattern fully captures
the order in which states should occur, representing the important steps that
any protocol should contain, while still abstracting from the actual procedural
information on how the transition from one state to another should be achieved.
In essence, a landmark pattern represents “those steps that should be taken and
in which order”.

From Norms to Interaction Patterns 59

Given that landmarks are considered as state descriptions [3], a landmark
pattern is defined as follows.

Definition 1 (Landmark Pattern)
A landmark pattern is a structure L = 〈L+, ≤〉 where L+ is a finite set of
landmarks (state descriptions) and ≤ is a partial order on L+.

Similar to the relation between norms, regulations and practice, where regu-
lations add operational information to the restrictions given by the norms, a
landmark pattern should add additional information to the normative goals in
order to bridge the gap between the norms and the practice. The norms only
give a (temporal) ordering of the states that should be reached. The normative
landmark pattern extracted from these norms will thus leave many blanks, sit-
uations where the order of events/actions is undetermined by the norms or only
minimally described. The choices in ordering that are not specified in the pat-
tern, however, will in most cases influence the efficiency or even the feasibility
of the pattern. For example, norms concerning organ transplantation describe
that permission for organ removal (π) must be obtained before the organs are re-
moved (ρ), as well as that doctors should check whether a patient is brain death
(δ) before starting the operation for removing organs of the patient. These two
norms only describe that two states, π and δ, should be reached before another
state, ρ, happens. No information is given about the ordering of states π and
δ, but obviously making sure that δ happens before π is more practical then
having π occur before δ. This would mean that we add the ordering δ ≤ π to
our landmark pattern, to obtain 〈{π, δ, ρ}, {π ≤ ρ, δ ≤ ρ, δ ≤ π}〉.

In this case we added an extra ordering between existing landmarks to exclude
the possibility of inefficient situations arising, but additional landmarks can be
added to the existing pattern to express information concerning efficiency and
feasibility. Consider again our organ transplant example, where we now include
the additional step of assigning the organ (α). According to the law, the assign-
ment procedure can only start after the organ has been removed (ρ ≤ α). The
procedure of assigning organs, however, needs certain information about the or-
gan to make sure that the assigned receiver is a compatible recipient. In the cur-
rent landmark pattern, this information will need to be gathered at the moment
the assignment is taking place. Some of the information needed for the assign-
ment process (for instance, the blood type of the deceased (β)) can be checked in
the very beginning of the protocol, and doing so can greatly improve the speed
at which an organ is assigned (thus increasing the efficiency of the process, as
well as the feasibility, due to degradation of organs after removal). The resulting
pattern would then be 〈{π, δ, ρ, α, β}, {π ≤ ρ, δ ≤ ρ, δ ≤ π, ρ ≤ α, δ ≤ β, β ≤ π}〉.

Even though all kinds of information concerning efficiency and feasibility can
be added to the landmark pattern, some limitations still exist that should not
be overlooked. The pattern will have to satisfy certain principles to be useful.
Firstly, the pattern needs to be norm-compliant. No landmarks should be added
that are in conflict with the requirements specified by the norms. Secondly,
the pattern needs to contain only reachable landmarks; the pattern should not
contain landmarks that are unachievable by definition (e.g. a state satisfying

60 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

a ∧ ¬a), or express an ordering that is impossible to fulfil. Lastly, a landmark
pattern should only express goals that are within the capabilities of the agents.

3 From Norms to Landmarks

Creating a protocol for a normative domain is done by using an intermediate
level of landmarks that we presented above. This process of generating a (proto-
typical) protocol for a normative domain is the following. First a set of landmarks
is extracted from the norms governing the domain. To extract this (normative)
landmark pattern from the norms we use a technique presented in [17], which
was originally developed with model-checking in mind (some model-checkers, like
SPIN, [11], are built around principles very similar to those of this technique).
The idea is that we create a generic, canonical-like model representing all LTL
models that satisfy the norms of the system. This canonical model is, in fact, a
finite state machine as we show later. From this finite state machine we generate
a regular expression expressing the characteristic features of all models satisfying
the norms. We will show that this expression is, in fact, a basic landmark pattern,
exactly containing all the important states (landmarks) expressed in the norms,
as well as the order in which these states must occur (thus making it a landmark
pattern). This normative pattern will then be expanded with extra landmarks
to strengthen it to a full landmark pattern (as described above). The landmark
pattern, now including all important states, both normative-wise and efficiency-
wise, will then be translated into a protocol for the normative domain.

Norms are expressed in linear-time temporal logic (similar to [8]). The tem-
poral logic that we are going to use is the following (note that any LTL logic
can be used for this, as long as the formulas are in negated normal form). The
formulas of linear-time temporal logic built from a set of atomic propositions P
are the following:

– true, false, p, ¬p for all p ∈ P ;
– ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are LTL formulas;
– �ϕ1, ϕ1 until ϕ2, and ϕ1 releases ϕ2, where ϕ1 and ϕ2 are LTL formulas.

The operator � is a next-state operator, denoting that ϕ1 must hold in the state
following the present one. The until operator is a strong until, denoting that
ϕ1 must hold in all states up to a state where ϕ2 holds (which should appear).
The release operator is the dual of until and requires that ϕ2 is always true, a
requirement that is released as soon as ϕ1 holds. The sometime (♦ϕ1) and always
(�ϕ1) operators, denoting that ϕ1 holds somewhere in the future or in every
state from now on, respectively, are introduced as the following abbreviations:
♦ϕ1 ≡ true until ϕ1 and �ϕ1 ≡ false releases ϕ1.

The semantics of this logics, with respect to sequences σ : N → 2P , where we
write σ(i) to denote the ith state of σ and σj to denote the suffix of σ obtained
through removing the first j states of σ (i.e. σj(i) = σ(j + i), is given by the
following rules:

– For all σ, we have σ � true and σ
� false;
– σ � p for p ∈ P iff p ∈ σ(0);

From Norms to Interaction Patterns 61

– σ � ¬p for p ∈ P iff p
∈ σ(0);
– σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2;
– σ � ϕ1 ∨ ϕ2 iff σ � ϕ1 or σ � ϕ2;
– σ � �ϕ1 iff σ1 � ϕ1;
– σ � ϕ1 until ϕ2 iff there exists i ≥ 0 such that σi � ϕ2 and for all 0 ≤ j < i,

we have σj � ϕ1;
– σ � ϕ1 releases ϕ2 iff for all i ≥ 0 such that σi
� ϕ2, there exists 0 ≤ j < i

such that σj � ϕ1.

Using this logic we can, as done in [8], give a representation of the normative
operators that we are going to use to represent the norms. The norms are intro-
duced as an Anderson’s reduction [4], by the introduction of a special proposition
v(ρ, δ) to denote that a violation concerning ρ and δ has occurred. We limit our-
selves to obligations, which can be expressed in the logic presented above as:

O(ρ < δ)⇔♦δ ∧
[
(¬δ ∧ ¬ρ ∧ ¬v(ρ, δ)) until

((ρ ∧ ¬δ ∧ �¬v(ρ, δ)) ∨ (¬ρ ∧ δ ∧ �v(ρ, δ)))
]

Although prohibitions also play an important role in normative specifications
we do not treat them separately here as they can be expressed in terms of
obligations; i.e. F (ρ) ⇔ �O(¬ρ < true).

As mentioned before, the landmarks will be extracted from an automaton
that is generated on basis of the LTL specification of the norms.

Automata on Infinite Sequences. The automata that we consider are Büchi
automata on infinite words. Infinite words are sequences of symbols isomorphic
to the natural numbers, i.e. a mapping from the infinite sequence to symbols of
the alphabet Σ; w : N → Σ. Büchi automata have exactly the same structure
as traditional finite word automata, with the exception that their semantics
are defined over infinite words. A Büchi automaton is defined as a tuple A =
(Σ, S, Δ, S0, F) where

– Σ is an alphabet,
– S is a set of states,
– Δ : S × Σ → S (deterministic) or Δ : S × Σ → 2S (nondeterministic) is a

transition function,
– S0 ⊆ S is a set of initial states (a singleton for deterministic automata), and
– F = {F1, . . . , Fk}, a set of sets of accepting states where Fi ⊆ S for every

Fi ∈ F

A word w is accepted (or recognised) by A if there exists a sequence λ : N → S
of states such that

– λ(0) ∈ S0 (the initial state of λ is an initial state of A),
– ∀0 ≤ i, λ(i + 1) ∈ Δ(λ(i), w(i)) (the sequence of states is compatible with

the transition relation of A),

62 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

– For each Fi ∈ F , inf(λ)∩Fi
= ∅ where inf(λ) is the set of states that appear
infinitely often in λ (the set of repeating states of λ intersects the accepting
set F).

Given these definitions of LTL and Büchi automata we can now present the
relation between the logic and the automata and the procedure to create a
automaton that accepts exactly those sequences that satisfy a formula ϕ. The
translation from LTL formulas to Büchi automata is taken from work presented
in [17]. The idea is that the sequences accepted by an automaton correspond
exactly to those LTL sequences satisfying the formula.

A state s in the sequence σ is an LTL state characterised in the proposi-
tional elements that hold in that LTL state. These LTL state descriptions will
ultimately form the symbols of the language accepted by the automaton, the
sequence of these state descriptions being the words accepted by the automaton.
A closure labelling τ is defined to denote the temporal formulas that must at
least hold at the different stages of an automaton run, they will ultimately be
used as the labellings of the automaton states. This labelling τ of a sequence σ
indicates which (temporal) subformulas of ϕ hold at each state of σ, i.e. a sub-
formula ϕ1 of ϕ labels a position i (written as ϕ1 ∈ τ(i)), if and only if σi � ϕ1.
We define the set of subformulas of a formula ϕ, called the closure of ϕ (cl(ϕ)),
as follows:

– ϕ ∈ cl(ϕ);
– ϕ1 ∧ ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ);
– ϕ1 ∨ ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ);
– �ϕ1 ∈ cl(ϕ) ⇒ ϕ1 ∈ cl(ϕ);
– ϕ1 until ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ);
– ϕ1 releases ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ).

The closure labelling τ of a sequence σ, denoting the formulas of the closure of ϕ
that hold at a given position, is then defined in such a way that it guarantees the
correspondence between the positions in τ with positions in σ; i.e. the closure
labelling is defined by means of a set of rules that mirror LTL semantics. The
closure labelling τ : N → 2cl(ϕ) of a sequence σ : N → 2P for a formula ϕ over
a set of atomic propositions P is valid when it satisfies the following rules for
every i ≥ 0:

1. falsum
∈ τ(i);
2. for p ∈ P , if p ∈ τ(i) then p ∈ σ(i), and if ¬p ∈ τ(i) then p
∈ σ(i);
3. if ϕ1 ∧ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i);
4. if ϕ1 ∨ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) or ϕ2 ∈ τ(i);

These rules ensure that the propositional part of LTL is satisfied by the closure
labelling. Note that because the rules are specified as “if” rules and not as “if
and only if” rules, the closure labelling is not required to be maximal, i.e. the
rules give the requirements that must be satisfied by the closure labelling, but
do not require that all formulas of the closure that hold at a given position are
included in the label of that position.

For the temporal operators, the following rules are given.

From Norms to Interaction Patterns 63

5. if �ϕ1 ∈ τ(i) then ϕ1 ∈ τ(i + 1);
6. if ϕ1 until ϕ2 ∈ τ(i) then either ϕ2 ∈ τ(i), or ϕ1 ∈ τ(i) and

ϕ1 until ϕ2 ∈ τ(i + 1);
7. if ϕ1 releases ϕ2 ∈ τ(i) then ϕ2 ∈ τ(i), and either ϕ1 ∈ τ(i) or

ϕ1 releases ϕ2 ∈ τ(i).

Rule 5 for the � operator follows directly from the LTL semantics of the operator.
For the until and releases operators, however, the equivalences ϕ1 until ϕ2 ≡
(ϕ2∨(ϕ1∧�(ϕ1 until ϕ2))) and ϕ1 releases ϕ2 ≡(ϕ2∧(ϕ1∨�(ϕ1 releases ϕ2)))
are used for the definition of rules 6 and 7 instead, since they avoid the reference
to a possibly infinite set of points in the sequence (it can be easily shown that
these equivalences follow from the semantics of these operators).

Unfortunately, an extra rule is required to guarantee that the labelling satisfies
subformulas with an until. Since rule 6 does not force the existence of a point
at which ϕ2 appears, this can be postponed forever (which is inconsistent to the
LTL semantics of the until operator). An extra rule to guarantee the existence
of this point satisfying the eventuality (formulas of the form ϕ1 until ϕ2 are
called eventualities, because ϕ2 must eventually hold) has to be added:

8. if ϕ1 until ϕ2 ∈ τ(i) then there is a j ≥ i such that ϕ2 ∈ τ(j).

Given these restrictions, a formalisation of the relation between the closure
labelling and the LTL sequence is given in [17]:

Theorem 1. Consider a formula ϕ defined over a set of propositions P and a
sequence σ : N → 2P . One then has that σ � ϕ iff there is a closure labelling
τ : N → 2cl(ϕ) of σ satisfying rules 1-8 and such that ϕ ∈ τ(0).

Given this theorem, the relation between an automaton A accepting all sequences
satisfying ϕ and the LTL models is rather obvious. Recall that automata accept
infinite sequences (words) when this sequence can be labelled by states of the
automaton, while satisfying the conditions that the first state of the sequence is
a start state of A, the transition relation of A is respected and the acceptance
condition of A is met. It then becomes obvious to use 2cl(ϕ) as state set (and
possible state labels), and create an automaton over the alphabet 2P that satisfies
the necessary properties expressed in the labelling rules expressed above. 1

Definition 2
A Büchi automaton for a formula ϕ is a tuple Aϕ = (Σ, S, Δ, S0, F), where

– Σ = 2P

– S is the set of states s ⊆ 2cl(ϕ) that satisfy
1 The alphabet of an automaton A for a formula ϕ consists of all possible LTL-worlds,

being that an LTL-world is described as the collection of the propositions that hold
in that world. For instance, if we only consider the propositions ρ, δ and γ, the LTL-
world that satisfies only ρ and δ will be denoted by {ρ, δ} (we also use ρδ or δρ to
denote this world). Conversely, the label γ denotes the LTL world in which γ holds,
but ρ and δ are false.

64 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

• falsum
∈ s;
• if ϕ1 ∧ ϕ2 ∈ s then ϕ1 ∈ s and ϕ2 ∈ s;
• if ϕ1 ∨ ϕ2 ∈ s then ϕ1 ∈ s or ϕ2 ∈ s.

– The transition function Δ is defined as t ∈ Δ(s, a) iff
• For all p ∈ P , if p ∈ s then p ∈ a.
• For all p ∈ P , if ¬p ∈ s then p
∈ a.
• If �ϕ1 ∈ s then ϕ1 ∈ t.
• If ϕ1 until ϕ2 ∈ s then either ϕ2 ∈ s, or ϕ1 ∈ s and ϕ1 until ϕ2 ∈ t.
• If ϕ1 unless ϕ2 ∈ s then ϕ2 ∈ s and either ϕ1 ∈ s, or ϕ1 unless ϕ2 ∈ t.

– S0 = {s ∈ S | ϕ ∈ s}.

Proposition 1. The Büchi automaton Aϕ from definition 2 accepts all and only
the sequences σ : N → 2P that satisfy the formula ϕ.

The restriction on the states S of Aϕ ensures that the states (and thus the
closure labels) satisfy rule 1 as well as rules 3 and 4 specified above. Rule 2 and
rules 5 - 7 are enforced in the transition function Δ of Aϕ. This ensures that
the automaton Aϕ complies to the rules 1 - 7 of the closure labelling specified
above. The restriction on the start states S0 of Aϕ ensures that ϕ appears in
the label of the first position of the sequence (thus limiting the labellings of
Aϕ to those where ϕ ∈ τ(0), as required by theorem 1). To ensure rule 8, the
acceptance condition of the automaton is used. Rule 8 specifies that every state
that contains an eventuality e(ϕ′) (where ϕ1 until ϕ′ ∈ cl(ϕ) ⇒ e(ϕ′) ∈ cl(ϕ))
is followed at some point by a state that contains ϕ′. This means that labellings
where e(ϕ′) appears indefinitely without ϕ′ ever appearing must be avoided.
These labellings can be avoided by requiring that the automaton goes infinitely
often through a state in which both e(ϕ′) and ϕ′ appear or in which e(ϕ′) does
not hold. To achieve this, the acceptance condition of Aϕ is specified as the
following generalised Büchi condition:

– Given eventualities e1(ϕ1), . . . , em(ϕm) in cl(ϕ), we have F = {F1, . . . , Fm}
where Fi = {s ∈ S | ei, ϕi ∈ s ∨ ei
∈ s}.

In accordance to this definition of an automaton accepting the sequences
that satisfy ϕ, [17] states a procedure to generate a minimal Büchi automaton
satisfying the constraints mentioned.

Extracting the Landmarks. Using the relation between LTL and automata
presented above we can now create an automaton that models all LTL sequences
that satisfy the norms of a given domain. The norms, expressed as LTL formulas
as presented earlier in this section, form the basis of the formula ϕ of which the
automaton is built. Lets consider, for illustrative purposes, a domain governed
by a single deadline O(ρ < δ) (ρ needs to happen in one or more states before δ
appears). If a protocol needs to be created for this domain, we need to extract the
landmarks specified by the norms governing the domain. These landmarks, as
explained earlier, are the characteristic features of the norms that define the basic
structure of protocols that comply to that norms. The landmarks are extracted

From Norms to Interaction Patterns 65

s2

s1

s3 s4

s5

∅

∅

ρ ρ

ρ,δ,ρδ,∅

ρ,δ,ρδ,∅

ρ,δ,ρδ,∅

δ,ρδ

s1={O(ρ<δ),♦δ,

¬ρ∧¬δ∧¬v(ρ,δ),�¬v(ρ,δ)}

s2={O(ρ<δ),♦δ,

ρ∧¬δ∧�¬v(ρ,δ),�¬v(ρ,δ)}

s3={♦δ,�¬v(ρ,δ)}

s4={♦δ,δ,�¬v(ρ,δ)}

s5={�¬v(ρ,δ)}

Fig. 2. A Büchi automaton for O(ρ < δ)

from the norms by creating an automaton (which, in fact, is a general, canonical-
like model of the norms, since it represents all LTL sequences satisfying that set
of norms) by means of the procedure described above. However, building an
automaton on basis of the logical representation of the norms gives a model of
the norms that also includes the LTL sequences where (one of the) norms have
been violated, since the violation of a norm is just as much a part of the logical
representation because of its prescriptive nature (norms express what should
be, not what is). Instead, we are more interested in only those LTL sequences
where the norms hold but are not violated, since these sequences characterise
the patterns that we want to capture in the protocol that we are creating. In
case of our example, this means we need to build an automaton for the formula
O(ρ < δ) ∧ �¬v(ρ, δ). The resulting automaton Aϕ, generated by the procedure
described above, is shown in figure 2. The alphabet of the automaton is taken
as Σϕ = 2{ρ,δ,v(ρ,δ)}, the states s1, . . . , s5 ⊆ 2cl(ϕ) (parts of the state labels are
given in figure 2), the starting states of the automaton are s1 and s2, and the
acceptance set is defined as Fϕ = {{s4, s5}, {s2, s4, s5}}.

As can be seen, this automaton exactly represents our intuition of a deadline
(as expressed in LTL logics). All LTL sequences satisfying a deadline, should have
a number of states (possibly zero) in which nothing interesting happens (this is
represented in state s1). Then a state occurs where ρ holds (state s2), after which,
one or more states later, δ holds (the intermediate states are represented in state
s3, the state where δ occurs is represented in state s4). After the obligation has
been fulfilled (δ has happened, while ρ happened one or more states before δ), an
infinite sequence of states occurs where anything can happen as long as v(ρ, δ)
does not happen; this is represented in state s5 (since no more restrictions are
posed on ρ and δ, they can hold in any order at any state after the deadline has
been fulfilled). Note that, as required, none of the states satisfy v(ρ, δ). To fulfil
the Büchi acceptance condition the sequences before ρ has happened (i.e. the
transition from s1 to s1), and the sequence before δ happens (i.e. the transition
from s3 to s3), can only be of finite length, the only infinite recursion in this
automaton is the transition from s5 to itself.

66 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

After translating the norms to a Büchi automaton we can extract a regular
expression characterising the language expressed by the automaton. The idea
is that the main characteristics, the basic landmark structure, obtained from
the norms that are represented in the Büchi automaton, can be easily extracted
through this regular expression.

Büchi automata accept a specific type of regular languages, namely ω-regular
languages (or ω-languages, see [16,15]) The major difference between these ω-
languages and regular languages is, like the difference between Büchi automata
and normal finite automata, that ω-languages are composed of infinite sequences
(ω-words), where regular languages only contain finite words (the sequences are
of finite length). The following property of Büchi automata, taken from [6] then
expresses the language recognised by a Büchi automaton A.

Theorem 2. An ω-language Lω ⊆ Σω is Büchi recognisable iff L is a finite
union of sets U.V ω where U, V ⊆ Σ∗ are regular sets of finite words.

The representation of the ω-languages by Lω =
⋃n

i=1 Ui.V
ω
i , where Ui, Vi are

given by regular expressions, is called an ω-regular expression.
For the automaton presented in figure 2, we can express the accepted language

by the following ω-regular expression (we use all to denote (∅ + ρ + δ + ρδ))

Lω(Aϕ) = ∅
∗.ρ.all∗.(δ + ρδ).allω.

As can be easily seen from this ω-regular expression, the points of interest of
every LTL sequence satisfying ϕ are the state where ρ holds and the state where
either δ or ρδ holds (the former being the state where δ ∧ ¬ρ ∧ ¬v(ρ, δ) holds,
the latter where δ ∧ρ∧¬v(ρ, δ) holds). As seen in the expression, confirming the
intuition about deadlines, all LTL sequences satisfying O(ρ < δ) have a state
where ρ holds (possibly preceded by a number of states where neither ρ nor δ
hold), which always happens before a state occurs where δ holds (the ω-regular
expression allows a number of states, possibly zero, between the occurrence of ρ
and δ, in which ρ may occur as well). The fact that the state where δ should hold
is denoted in the expression as δ+ρδ is mainly because, since the restriction of ρ
at least happening before δ has already been met, at this point it does not really
matter whether ρ holds or not (basically, the transition label δ + ρδ expresses
no information concerning ρ or ¬ρ, but expresses that at least δ holds).

Given that we can deduce from the label δ + ρδ that at least δ holds, we can
simplify the regular expression to the following landmark pattern

Lϕ = 〈{ρ, δ}, {ρ ≤ δ}〉

This is the normative landmark pattern extracted from the norms of the domain
(just O(ρ < δ) in this case). This landmark pattern is the basis of the landmark
pattern that we construct to create protocols. The landmark pattern will now
be extended with additional landmarks to denote domain-specific information
and information to increase the efficiency and feasibility of the pattern.

From Norms to Interaction Patterns 67

4 Strengthening the Pattern

Earlier we mentioned that the landmarks, used as an intermediate level between
the norms and the practice, add extra information to the norms to bridge the
gap between the norms and the protocols. Using the “skeleton” landmark pat-
tern extracted from the norms, as presented above, we extend this normative
landmark pattern with additional landmarks (and orderings) to create a land-
mark pattern that expresses both normative and efficiency restrictions that the
protocol must satisfy.

This would mean that the landmark pattern for our example domain, Lϕ, is
extended with additional landmarks and orderings. The additional landmarks
are, in fact, filling in the “gaps” between the normative landmarks in the ω-
regular expression of this normative domain, Lω(A) = ∅

∗.ρ.all∗.(δ + ρδ).allω.
We will show that adding these additional landmarks creates a new ω-regular
expression that represents a language L′

ω that is accepted by Aϕ if the alphabet
of Aϕ is extended accordingly. Note, though, that this does not count as a one-
one relation, as the adapted automaton accepts more words than just those
expressed in L′

ω (though still satisfying only the LTL sequences that satisfy ϕ).
Meaning, the automaton A′

ϕ, which is the adaptation of Aϕ, accepts words that
are not included in L′

ω. We do not intent to built a new automaton that exactly
matches the restrictions in the extended landmark pattern, but just to show that
the new landmark pattern is an instantiation of the normative landmark pattern
(i.e. the extended landmark pattern is a special case of the normative landmark
pattern).

Let us assume that a landmark γ can be added to the normative landmark
pattern, between ρ and δ, to increase efficiency. The landmark pattern resulting
from this addition would be

L′
ϕ = 〈{ρ, δ, γ}, {ρ ≤ γ, γ ≤ δ, ρ ≤ δ}〉.

By extending the ω-regular expression from the normative landmark pattern in a
similar way, we can show that the (slightly changed) automaton A′

ϕ accepts the
words represented by this pattern, thus reinforcing that the extended landmark
pattern is still compliant to the norms. This extended ω-regular expression is
the following

L′
ω(A′

ϕ) = ∅
∗.ρ.(∅ + ρ + γ + ργ)∗.(γ + ργ).all∗.(δ + ρδ).allω.2

The change to the automaton Aϕ to create A′
ϕ that accepts words from this lan-

guage, is merely the addition of γ to the alphabet (if the alphabet of the automa-
ton does not contain γ it can never accept words that include γ). This change
also means that the labels of the transitions of the automaton are changed. Ba-
sically, we re-run the procedure presented above to create an automaton for ϕ

2 Note that the first intuition of this ω-regular expression, being ∅
∗.ρ.all∗.γ.all∗.(δ +

ρδ).allω, is not correct, due to the fact that it allows δ to appear before γ appears
(remember that all = (∅ + ρ + δ + ρδ)).

68 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

over an alphabet Σ′
ϕ = 2{ρ,δ,γ,v(ρ,δ)}, however, since we did not add any infor-

mation to the formula ϕ that has to be satisfied by the sequences of A′
ϕ, nothing

changes in the structure of A′
ϕ (no new states or transitions are added), we only

added a proposition of which no restrictions are given (i.e. γ can be true or false
in any state of the LTL sequences, or, no information about the truthvalue of γ
is given in any of the states of the automaton).

The relations that the additional landmarks express are not incorporated in
the automaton A′

ϕ and if one would want these restrictions to be expressed in
A′

ϕ, the procedure presented above can be run on an adapted formula ϕ′ that
expresses, next to the norms, these restrictions. However, for the purpose that
we expressed in section 2, it is enough to proceed as presented above, i.e. only
check whether the extended landmark pattern is still compliant to the norms.

4.1 Landmarks to Protocols

Given that the landmark pattern expresses states that should be achieved, it can
be viewed as a collection of goals and the order in which these goals must be
achieved. A translation from a landmark pattern to a basic, prototypical protocol
is then achieved by means of use of seeing to it that operators (stit) [5]. While
the stit operator ignores the means by which an agent will bring about a state of
affairs, it does provide the link to make states (the landmarks) into procedural
goals. It is then possible to create a protocol given this specification of goals
(while retaining the order in which they should be achieved) by linking these
goals to the capabilities of agents via a planning algorithm, e.g. like STRIPS [10].

Let us illustrate this by means of our example, where it means that the land-
mark pattern L′

ϕ = 〈{ρ, δ, γ}, {ρ ≤ γ, γ ≤ δ, ρ ≤ δ}〉 is translated to an ordering
of goals, represented as a sequence of (still abstract) actions: (stit ρ) ; (stit γ) ;
(stit δ), thus expressing that it should be the case that ρ is achieved first, then
γ and finally δ. The capabilities of the agents in the domain can then be used to
expand this action sequence composed of abstract actions (which abstracts from
the means necessary to achieve the expressed goals) to a full protocol (again,
expressed as a sequence of actions). For this example, let us assume that the
agents have the following capabilities (we use a “STRIPS-like” representation
of the agents capabilities, by expressing the necessary pre-conditions and post-
conditions of the actions, such a definition of an agent’s capabilities is found in,
for example, the 3APL agent programming language, [7]):

Op(Action : action1, Effect : ρ)
Op(Action : action2, Precond : ρ, Effect : η)
Op(Action : action3, Precond : η, Effect : γ)
Op(Action : action4, Precond : γ, Effect : δ)

Using these capabilities, we can use the planning algorithm to expand the ab-
stract protocol (stit ρ) ; (stit γ) ; (stit δ) to the following full protocol.

action1 ; action2 ; action3 ; action4

From Norms to Interaction Patterns 69

It might be possible that a landmark expresses a state that is not reachable
by a single agent alone; a cooperation of agents might be needed to achieve
(parts of) the landmark pattern. In this case, methods for designing interaction
patterns between agents, such as the ones in OperA, [9], can be applied to
create the necessary interaction protocols for reaching those complex goals.

5 Example

Let us look at an example to show the entire process described in the previous
sections. For simplicity reasons and due to space limitations we only show how
the technique presented above works with a single norm. For a more in depth
view of using multiple norms, or the creation of protocols involving multiple
agents, we refer to [2].

The example we use here is based on the domain of organ transplantation.
The task at hand, that should be achieved by the protocol, is to assign organs
that have just become available (a suitable donor has been found, i.e. a patient
who made a statement to permit post-mortem liver transplantation has died).
This task, assign organ, is the goal of the protocol that has to be achieved
while keeping in mind the restrictions given by the norms of the domain. We
assume that there exist one norm for this task (from the Dutch law on organ
transplantations):

Before an organ is removed, death is certified by a professional doctor
in accordance with the latest medically valid methods and criteria for
determining brain death.

We represent this norm as the following (LTL) formula:

O(certify death < remove organ)

Naturally, there exist a precedence ordering between the remove organ state
and the assign organ state (one cannot assign organs before extraction). Since
we use assign organ as the ultimate goal state, we need to model this ordering
as well:

¬assign organ until remove organ ∧ ♦assign organ

This formula expresses that ¬assign organ necessarily holds up to the point
at which remove organ holds, after which, at some moment, assign organ will
hold. Combined with the norm specified above, this gives us the LTL formula ψ
that restricts the domain, and needs to be converted to a landmark pattern:

ψ ≡ O(certify death < remove organ)∧
¬assign organ until remove organ ∧ ♦assign organ

The Büchi automaton Aψ resulting from the translation of this set of norms
is shown in figure 3 below (we abbreviate remove organ to ρ, assign organ to
α and certify death to γ). The acceptance condition of Aψ is given as the set
Fψ = {{s6, s7}, {s4, s5, s6, s7}, {s2, s4, s5, s6, s7}}.

70 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

s
2

s
1

s
3

s4

s
5

∅

∅

γ

ρ, γ,ργ,∅

ρ, γ,ργ,∅

ρ,ργ

s
6

ρ,ργ

ρ,γ,α,∅,ργ,

αρ,αγ,αργ

s
7

α,αρ,

αγ,αργ

γ

ρ,γ,α,∅,ργ,

αρ,αγ,αργ

ρ,γ,α,∅,ργ,

αρ,αγ,αργ

The most important elements of the state labels
are the following:

s1={O(γ<ρ),¬α until ρ,♦ρ,♦α,¬γ∧¬ρ∧¬v(γ,ρ),¬α}

s2={O(γ<ρ,¬α until ρ,♦ρ,♦α,γ∧¬ρ∧�¬v(γ,ρ),¬α}

s3={♦ρ,♦α,�¬v(γ,ρ),¬α}

s4={♦ρ,♦α,�¬v(γ,ρ),ρ,¬α}

s5={♦α,�¬v(γ,ρ)}

s6={♦α,�¬v(γ,ρ),α}

s7={�¬v(γ,ρ)}

Fig. 3. Example Automaton

Using the automaton of figure 3 we create an ω-regular expression to describe
the language accepted by the automaton. This ω-regular expression captures
all the important features of the LTL structures of ψ that are represented in
Aψ. We abbreviate (ρ + γ + α + ∅ + ργ + αρ + αγ + αργ) to all (it denotes
that everything but v(γ, ρ) can hold at that moment). Note that the expression
allows for multiple occurrences of γ, ρ and α (although they need to occur in
a particular order), i.e. words like ρ.γρ.αρ.αω are accepted by the automaton,
while, in practice, only one occurrence of each of these states is more likely; e.g.
after the death of the patient has been certified, it will not have to be done again
(for that same patient). Basically, the practice that we are trying to model is
best described by the ω-expression: ∅

∗.γ.∅∗.ρ.∅∗.α.∅ω. This, however, is not
a weakness of the technique we are describing here, but merely a weakness of
the LTL representation that we used. Since we have not specified in our LTL
representation that the states will only happen once, they can happen multiple
times. The LTL representation only models the restrictions on the ordering of
the state occurrences.

∅
∗.γ.(ρ + γ + ργ + ∅)∗.(ρ + ργ).all∗.(α + αρ + αγ + αγρ).allω

From this ω-regular expression we can derive the following (normative) land-
mark pattern (remember that ρ + γρ denotes that at least ρ should hold, and
that α + αρ + αγ + αγρ denotes that at least α holds):

L′
ψ = 〈{γ, ρ, α}, {γ ≤ ρ, ρ ≤ α}〉

Using knowledge from the domain we strengthen the landmark pattern with
additional landmarks. In this case, we use the knowledge that before the assign-
ment the compatibility between the organ and the donor must be checked, e.g.
to see if the blood type of the donor and the recipient match. To increase the

From Norms to Interaction Patterns 71

efficiency of the assigning, we can check the blood of the donor when the death
has been certified (check bloodtype, shortened as β), giving us the following
landmark pattern:

Lψ = 〈{γ, ρ, α, β}, {γ ≤ ρ, ρ ≤ α, γ ≤ β, β ≤ ρ}〉

The last step of the process is converting the landmark pattern to a basic,
prototypical protocol, using stit operators: stit(γ); stit(β); stit(ρ); stit(α), which
is then translated, by using the capabilities of the agents, to a protocol:

execute brain death protocol ; take blood sample ;
test blood(bloodtype) ; start operation ; remove organ ;
assign organ(patient, bloodtype) ; operate(patient)

This protocol can be used as a basic pattern for agents that have to fulfil the
norm that we started out with. Of course it can still be extended with extra
actions to provide for specific situations.

6 Conclusion

In this paper we have described a procedure to derive a basic protocol from
norms described as obligations with deadlines. This procedure can be used to
provide protocols for e-institutions governed by norms such that agents that
follow these protocols will always fulfil all the norms of the e-institution.

We have not shown in this paper how the process can be conducted using
multiple norms. Basically, this process is a very simple extension of the above
described procedure. The different norms are all described in LTL. We can com-
bine the norms in LTL by just taking the conjunction of them. If more knowledge
is available on the relation between the norms that is not explicit in the norms
themselves this can also be added in the LTL description. Often this amounts to
temporal orderings between deadlines of the norms that derive from common-
sense knowledge. E.g. asking consent for organ donation from family of a donor
should be done after the donor has died (not before). The resulting formula can
then be processed as before again.

Another point that we could not expose in depth due to space limitations is
the construction of a protocol involving multiple parties. Mainly what comes out
of the procedure above is a set of states that should be reached by the agents. If
a state can only be reached by a coordinated action of several agents we can use
techniques from MAS planning to create an interaction pattern to reach that
state. Although not at all trivial we assume that existing techniques suffice to
bridge this gap.

Finally, we have not formally shown that the resulting protocols indeed satisfy
the norms. This can be done by verifying that the protocol will never lead to a
violation state. In [1] it has been shown that it is indeed possible to perform this
exercise, therewith ensuring the correctness of the complete procedure.

72 H. Aldewereld, F. Dignum, and J.-J.Ch. Meyer

References

1. Aldewereld, H., Dignum, F., Meyer, J.-J.C., Vázquez-Salceda, J.: Proving norm
compliancy of protocols in electronic institutions. Technical Report UU-CS-2005-
010, Utrecht University (2005)

2. Aldewereld, H.: Autonomy vs. Conformity: An Institutional Perspective on Norms
and Protocols. PhD thesis, Universiteit Utrecht (2007)

3. Aldewereld, H., Grossi, D., Vázquez-Salceda, J., Dignum, F.: Designing normative
behaviour via landmarks. In: Bossier, O., et al. (eds.) Coordination, Organisation,
Institutions and Norms in Agent Systems I, pp. 150–162. Springer, Heidelberg
(2006)

4. Anderson, A.R.: A reduction of deontic logic to alethic modal logic. Mind 67, 100–
103 (1958)

5. Belnap, N., Perloff, M.: Seeing to it that: A canonical form for agentives. Theoria 54,
175–199 (1988)

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the 1960 International Conference on Logic, Methodology and Philos-
ophy of Science, pp. 1–11. Stanford University Press, Stanford (1962)

7. Dastani, M., van Riemsdijk, B., Meyer, J.-J.C.: Programming multi-agent systems
in 3apl. In: Bordini, R.H., et al. (eds.) Multi-Agent Programming: Languages,
Platforms and Applications, Springer, Berlin (2005)

8. Dignum, F., Broersen, J., Dignum, V., Meyer, J.-J.C.: Meeting the deadline: Why,
when and how. In: 3rd Goddard Workshop on Formal Approaches to Agent-Based
Systems (FAABS), Maryland (April 2004)

9. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded
in Logic. PhD thesis, Universiteit Utrecht, The Netherlands (2004)

10. Fikes, R., Nilsson, N.J.: Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3/4), 189–208 (1971)

11. Holzmann, G.J.: The model checker spin. IEEE Transactions On Software Engi-
neering 23(5), 279 (1997)

12. López y López, F., Luck, M.: Towards a model of the dynamics of normative multi-
agent systems. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA 2002.
LNCS (LNAI), vol. 2934, pp. 175–194. Springer, Heidelberg (2004)

13. P. Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. PhD thesis, Inst.
d’Investigació en Intel.ligència Artificial (1997)

14. Rodriguez, J.A.: On the Design and Construction of Agent-mediated Electronic
Institutions. PhD thesis, Inst. d’Investigació en Intel.ligència Artificial (2001)

15. Staiger, L.: ω-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, vol. 3, pp. 339–387. Springer-Verlag, Berlin (1997)

16. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, ch. 4, vol. B, Elsevier Science Publishers, Amster-
dam (1990)

17. Wolper, P.: Constructing Automata from Temporal Logic Formulas: A Tutorial.
In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA
2000. LNCS, vol. 2090, pp. 261–277. Springer, Heidelberg (2001)

Interoperability for Bayesian Agents in the

Semantic Web

Elder Rizzon Santos, Moser Silva Fagundes, and Rosa Maria Vicari

Instituto de Informática - Universidade Federal do Rio Grande do Sul (UFRGS)
Po. B 15.064 - 91.501-970 - Porto Alegre - RS - Brazil

Tel.:/Fax:+55 51 33166161
{ersantos,msfagundes,rosa}@inf.ufrgs.br

Abstract. This paper presents an ontology-based approach to promote
the interoperability among agents that represent their knowledge through
Bayesian networks. This research relies on Semantic Web foundations to
achieve knowledge interoperability in the context of multiagent systems.
Our first step was the specification of an ontology that formalizes the
structures of the Bayesian network representation. It was developed us-
ing OWL, which is a W3C recommendation for ontology language. Once
handled the issue of the knowledge representation, we specify how a
Bayesian agent operates such representation. Thus, we define a model
of internal architecture to support Bayesian agents in the knowledge
sharing and maintenance tasks. The utilization of the architecture is ex-
emplified through a case study developed in the context of a multiagent
educational portal (PortEdu). The case study demonstrates the interop-
erability resulted from the architecture integration with Bayesian agents
hosted in PortEdu.

Keywords: Semantic Web, Ontology, Interoperability, Bayesian Net-
works, Agent Architecture.

1 Introduction

Studies on interoperability on the context of Artificial Intelligence have been
done mostly for the communication among intelligent agents [1,2]. Today, such
researches can be applied for the development of the Semantic Web [3], which
is the mainstream on Internet technology. The purpose of the Semantic Web is
to aggregate meaning to web pages, in a way that not only humans, but also
computer software may interpret its content. Considering the Semantic Web
as an open system, populated by autonomous agents carrying out activities in
behalf of its owners, interoperability issues (i.e. how these agents from different
domains and with different goals will share their knowledge, co-operate and
maximize the utility of the whole system) arise.

This paper presents an agent architecture that allows the interoperability
of knowledge among Bayesian agents. We consider Bayesian agents those that
have their knowledge expressed through Bayesian networks. The fact that the

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 73–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

74 E.R. Santos, M.S. Fagundes, and R.M. Vicari

agents use the same knowledge representation (i.e. Bayesian networks) does not
guarantee that it is implemented in an interoperable way.

Our case study is contextualized in a multiagent system (MAS) that sup-
ports agent-based educational systems. This MAS, called PortEdu [4], is a FIPA
(Foundation for Intelligent Physical Agents) [2] compliant agent platform that
provides infrastructure and services for the systems in the portal. One of these
services is provided by the Social Agent [5], responsible for organizing the users
in groups considering cognitive and emotional aspects. Such social aspects are
represented by the agent as Bayesian networks. The case study consists in ap-
plying the proposed architecture in the Social Agent.

The interoperability core relies on the specified ontology for Bayesian net-
works. Ontologies are used to provide means to formalize concepts and the re-
lationships among them, allowing agents to interpret their meaning flexibly and
unambiguously [6]. In open systems, such as the Semantic Web, it is necessary
to have a standard way to communicate the knowledge. The W3C (World Wide
Web Consortium) is developing a set of recommendations to deal with this issue.
One of them is OWL (Web Ontology Language) [7,8]. It is designed specifically
for the purpose of knowledge communication in the Semantic Web. Currently, it
is considered the standard for content languages to be adopted in the Semantic
Web. Relying on a standard for communication solves an important interoper-
ability issue, the agreement on a well defined and common language.

The remaining of this paper is organized as follows: section 2 presents the re-
lated researches; section 3 specifies the Bayesian network ontology; in section 4
we describe the Bayesian agent internal architecture to interoperability; section 5
presents the application of the architecture on the social agent; and in section 6 it
is presented our conclusions and future work.

2 Related Research

BayesOWL [9] was developed to handle the issue of automatic ontology mapping.
This approach defines additional markups that can add probabilities to concepts,
individuals, properties and its relationships. It also defines a set of translation
rules to convert the probabilistic annotated ontology into a Bayesian network. The
focus on ontology mapping limits the BayesOWL markups since it was not nec-
essary to represent variables with states different than true or false. The reason
for this is that the probabilistic knowledge associated with each ontology concept
was used only for

Another approach that represents probabilistic knowledge through OWL is
PR-OWL [10]. Its goal is to provide a framework for probabilistic ontologies.
It constitutes an extension of OWL to express probabilistic knowledge. The
PR-OWL language adds new definitions to OWL allowing the expression of
uncertainty. The need for standardization represents a drawback for short-term
solutions but also points to a very interesting medium to long term solution, as
it fits well (providing the formal foundation of a first-order logic) in the W3C
model of standards.

Interoperability for Bayesian Agents in the Semantic Web 75

The objective of [11] is to provide the necessary structure to share Petri nets
on the Semantic Web context. This work reviews previous efforts done in Petri
net sharing and Petri net formalizations. Then, it specifies a Petri net ontology
using OWL language. Another work concerning Petri net representation is [12].
Its main goal is the understanding of the model executability. In order to achieve
this goal, it discusses Petri net related concepts, classifying them in static or
dynamic. The final result is a three level Petri net metamodel. The first level is
the definition metamodel that specifies the static part of the nets. The second
level defines a particular situation of a Petri net. The third level is an execution
metamodel that defines a sequence of situations.

Agent communication issues regarding probabilities are addressed in [13],
where is presented PACL (Probabilistic Agent Communication Language). It
is an extension of the FIPA-ACL designed to deal with the communication of
probabilistic knowledge. PACL specifies new communication axioms that are
necessary to model the probabilistic communication. Besides the axioms, the
language also designs assertive and directive probabilistic speech acts, which
extends FIPA-ACL. The PACL language provides a way to communicate prob-
abilistic knowledge extending FIPA-ACL and allowing more expressiveness to
this language. It does not deals with the communication of uncertainty at the
message content level, concerning how different Bayesian agents might exchange
knowledge regarding their networks and evidences.

In [14] it is described an approach to promote interoperability providing a
conversion engine based on OWL. The work defines an ontology that covers el-
ementary aspects necessary to construct Bayesian networks individuals, but it
does not formalizes the Bayesian network knowledge representation. The con-
version engine uses the ontology to automatically generate individuals from a
Bayesian network implementation following a standard format. The resulting
knowledge base is part of an architecture to promote interoperability for a
specific agent.

3 Bayesian Network Ontology

One of the contributions of this research is the specification of an ontology to
formalize the Bayesian network knowledge representation. Our ontology speci-
fication extends the concepts defined in [14], allowing a broader utilization of
the ontology. In our case, the ontology is used to allow heterogeneous agents to
communicate their Bayesian network knowledge (note that even if the represen-
tations of the agents are Bayesian networks, it still does not guarantee that they
can communicate it). One way to deal with this issue complying with current
standards is to use an OWL ontology. Sections 4 and 5 describe how the ontology
presented here is used to deal with interoperability issues.

In the following sub-sections we provide a detailed description of the devel-
oped ontology to represent Bayesian knowledge. First, we present the common
concepts among different probabilistic networks and a specialization of this
knowledge presenting the discrete Bayesian network definitions. Then, we detail

76 E.R. Santos, M.S. Fagundes, and R.M. Vicari

the evidence-related concepts and their relation to the evolution of the Bayesian
network individuals.

The figures in this section illustrates concept maps of the classes specified
in the ontology. This graphical representation provides a way to visualize the
classes (depicted as rectangles) and the relationship among them (illustrated as
arrows).

3.1 Probabilistic Network Concepts

Probabilistic networks are graphical models of causal interactions among a set
of variables, where the variables are represented as nodes of a graph and the
interactions as directed arcs between nodes [15].

A graph is the basic structure shared between probabilistic network models. It
is formalized in the ontology by the Graph class (Figure 1a). The Probabilistic-
Network class (Figure 1b) represents a probabilistic network and it is a subclass
of Graph. The ProbabilisticNetwork class models common aspects among varia-
tions in this kind of knowledge representation (i.e. Bayesian networks, influence
diagrams and object-oriented probabilistic networks). Those common elements
are the directed arcs and the nodes, respectively referenced by the inherited
properties hasArc and hasNode. The hasArc property is semantically restricted
to reference only DirectedArc class individuals.

hasArc

hasNode

hasLabel

hasLabel

Graph Node

Arc

Variable Label

(a)

hasArc hasNode

hasLabel

ProbabilisticNetwork

NodeDirectedArc

Label

hasParent

hasChild

(b)

Fig. 1. (a) Graph and (b) Probabilistic Network representations

To specify the direct link between a parent and a child node we define the
DirectedArc class, a specialization of the Arc class. Such link is represented
through the properties hasChild and hasParent of the arc class. The value of
these properties is an individual of the Node class.

Another general concept concerning probabilistic networks is defined by the
Variable class. It represents a set of mutually exclusive states. The states, also
called events or choices, correspond to the domain of the variable, which can
be discrete or continuous. In this work we consider only discrete variables (fi-
nite sets). A probabilistic network has two categories of variable: chance vari-
ables, representing random states, and decision variables, representing choices
controlled by some agent.

Interoperability for Bayesian Agents in the Semantic Web 77

3.2 Discrete Bayesian Network Concepts

A discrete Bayesian network consists of a DAG (Directed Acyclic Graph) and
a set of conditional probability distributions [16]. Each node in the network,
called chance node, corresponds to exactly one discrete random variable which
has a finite set of mutually exclusive states. The directed arcs specify the causal
relation between the random variables. Each random variable associated with a
chance node has a conditional probability distribution.

The BayesianNetwork class (Figure 2) is the core of our Bayesian network
definition. It is a subclass of ProbabilisticNetwork. The differences among the
classes are the semantic constraints imposed to the properties to specify the
correct type of nodes and arcs allowed in a Bayesian network. Such kinds of
nodes and arcs are represented by the ChanceNode and BayesianArc classes
respectively.

A BayesianArc individual defines a link between two chance nodes. It im-
poses constraints to formalize that only individuals of the ChanceNode class can
be assigned to these properties. A ChanceNode individual has a chance vari-
able associated to its definition. This property allows only individuals of the
classes PriorChanceVariable and ConditionalChanceVariable. Such constraint is
necessary in order to differentiate prior nodes variables from non-prior nodes.

Before defining a chance variable it is necessary to define a state and its related
concepts (Figure 3). A state is represented by the State class, which has only
the hasLabel property responsible for the node identification. The State class has
two direct subclasses. The first denotes a chance associated with a state and it
is called StateProbability. The second specialization is named ConditionalState
and it specifies the multiple conditional chances associated with a state. A set of
ConditionalState individuals constitutes a Conditional Probability Table (CPT).

The ConditionProbability class represents the conditional chances associated
with a state. This class is defined by the probability and the hasCondition prop-
erties. The former is a float data type property that represents the numerical
probability of a variable’s state under the conditions specified in the hasCon-
dition property. This property references multiple individuals of the Condition
class, and it denotes the conditions imposed in the probability of a state. The
Condition class is constituted by a conditioning node and a state of this node,
respectively referenced by the properties hasNode and hasState. The individual
referenced by the hasNode property must be a ChanceNode since only chance

ChanceVariable

StatehasArc hasNode

hasLabel

BayesianNetwork

ChanceNodeBayesianArc

Label

hasParent

hasChild

hasChanceVariable

StateProbability

hasState

hasMarginalDistribution

Fig. 2. Bayesian Network representation

78 E.R. Santos, M.S. Fagundes, and R.M. Vicari

StatehasNode

hasLabel

ChanceNode

LabelConditionalStatehasStateConditional
Chance
Variable hasConditionProbability

ConditionalProbability probability float

hasCondition

Condition hasState

Fig. 3. Conditional Probability Table representation

nodes have random variables. The hasState property references an individual
of the State class that indicates the specific state of the conditioning chance
variable.

The ChanceVariable class is a specialization of Variable and it represents
a chance variable. Additionally to the inherited properties from the Variable
class, it specifies the hasState and hasMarginalDistribution properties. The first
specifies the necessity of at least one state (represented by State individuals)
associated with a variable (i.e. true or false in the context of a boolean vari-
able). The second property represents the computed marginal distribution for
the chance variable, and it references multiple StateProbability individuals. Each
individual represents a state and its computed chance of occurrence.

It was necessary to differentiate prior node variables from non-prior ones, since
a non-prior node has a CPT, and a prior node has only states and probabili-
ties without conditioning variables. Thus, the classes PriorChanceVariable and
ConditionalChanceVariable were created as subclasses of ChanceVariable. The
difference between these two subclasses lies in the hasState property constraint.
In the PriorChanceVariable class the hasState property has been restricted and
it can reference only StateProbability individuals. As stated earlier, a state prob-
ability represents a state and its chance of occurrence. The set of StateProbability
individuals referenced by the hasState property denotes all possible states associ-
ated with a prior chance variable. The hasState property of ConditionalChance-
Variable class has also been constrained and only ConditionalState individuals
can be assigned to it. The ConditionalState individuals represent a Conditional
Probability Table of a variable associated with a non-prior node.

The hasLabel, a common property among Node, Variable and State concepts,
has as default value a Label class individual. The Label class is composed just
by a string indicating the label name. However, the hasLabel property is also
able to indicate individuals of other classes, which enables the developers to add
semantics to those concepts.

3.3 Situation Concepts

In our definition, a situation is a particular configuration that a probabilistic
network assumes given a set (possibly empty) of evidences of events occurrence.

Interoperability for Bayesian Agents in the Semantic Web 79

hasNode

ChanceNode

Label

hasPriorSituation

BayesianSituationhasEvidence

hasPosteriorSituation

Evidence

BayesianSituationTransition

Bayesian
Network

hasProbabilistic
Network

hasLabel

Fig. 4. Situation representation

When the evidences of events are reflected in the network, a new situation arises.
Such situations are useful to keep the history of modifications of a Bayesian
network. The Figure 4 depicts the situation related concepts.

An evidence, represented by the Evidence class, corresponds to any informa-
tion regarding the state of a variable from a probabilistic network. The Evidence
class is composed by a node, a label and a chance, represented by properties
hasNode, hasLabel and probability, respectively. The hasNode property can ref-
erence only individuals of the ChanceNode class, since chance nodes are the
only kind of node that represent random events. In order to specify a hard evi-
dence (an observation of an event), we specialize the Evidence class creating the
HardEvidence class. This class specifies a constraint defining that the probability
property must assume the numeric value one.

A situation, represented by the Situation class, has two properties. The first
is the hasProbabilisticNetwork property used to reference the network individual
whose configuration corresponds to the given situation. The second property is the
hasEvidence that corresponds to the set of evidences that originates the situation.
A particular kind of situation is represented by the BayesianSituation class. Its
inherited hasProbabilisticNetwork property can reference only Bayesian networks.

In order to establish a link between two sequential situations we created a
class named SituationTransition. This class is described by hasPriorSituation
property and hasPosteriorSituation property, which represents a prior and a pos-
terior situation, respectively. A situation transition between Bayesian networks
is represented in the class BayesianSituationTransition. This class inherits the
properties from SituationTransition and restricts them specifying that they can
only reference BayesianSituation individuals.

4 Bayesian Agent Internal Architecture

The main goal of our agent architecture is to enhance the interoperability of
Bayesian network knowledge among agents. The interoperability is achieved by
an ontology-based approach to represent the uncertain knowledge of the agent.
There are several levels of interoperability to be achieved, especially in agent
communication. Adopting the current agent development standard, FIPA, com-
munication issues such as agent language and protocols are solved. To allow a
broader use of the standard the content language was not standardized. They
do provide a content language, FIPA-SL, but its utilization is not mandatory.

80 E.R. Santos, M.S. Fagundes, and R.M. Vicari

Our approach uses OWL, which could be considered a knowledge represen-
tation standard, developed in the semantic web context. By adopting OWL as
a content language we aim to provide interoperability at the semantic level (in
our context, this means allowing heterogeneous agents to exchange their knowl-
edge, expressed through Bayesian networks). The architecture presented in this
section shows a possible way to integrate an ontology-based knowledge base into
an agent, aiming to improve its interoperability. Following, we detail the agents’
internal architecture, depicted in the Figure 5.

It is necessary to differentiate the architecture components from the agent
implementation specific ones. The architecture components are represented in
the figure by the gray elements. The Agent Implementation Specific Components
are represented in the figure by the white element. They are not specified by
this architecture since they relate to the particular purpose of each agent design.
However, we specify the way they interact with the architecture components.
Usually, the Agent Implementation Specific Components define the manner that
the agent reasons about its goals and how it achieves them (i.e. planning and
goal deliberation).

4.1 Architecture Components

The first component of the architecture is the Perception Handler, which receives
and forwards the perceptions to the respective components capable of interpret-
ing them. The characteristics of a perception (metadata) are taken into account
to decide which component will receive it. Since in the context of this work we
are dealing with interoperability among Bayesian agents, we focus on two par-
ticular categories of perception: Bayesian Network Knowledge and Query. The
first corresponds to individuals of the ontology presented in the Section 3. The
perceptions of this category are forwarded to the Knowledge Base (KB) Update
component. The second corresponds to queries about the agent’s knowledge that
are forwarded to the KB Query component.

The second component of the architecture is the KB Update. Its purpose is
to evaluate the incoming OWL Bayesian Network Knowledge, and insert the
selected ones in the knowledge base as individuals of the Bayesian network on-
tology. The information to be inserted is selected following the criteria defined
by the designer. A simple implementation of this component performs insertions
in the KB without restrictions. A more sophisticated implementation interacts
with the KB Query component to retrieve already inserted Bayesian information
to constrain the information to be inserted.

Our knowledge base is constituted by the Bayesian network ontology, detailed
in the Section 3, and its individuals. It stores the Bayesian networks situations,
the transitions between situations and the evidences. The base can contain mul-
tiple different Bayesian networks. Any modification in a Bayesian network char-
acterizes a new situation, and the sequence of situations represents a history of
a network. The history may be useful for an agent planning, in example.

In order to perform probabilistic reasoning in the Bayesian networks stored
in the knowledge base, we specify the Bayesian Inference component. Its inputs

Interoperability for Bayesian Agents in the Semantic Web 81

PERCEPTIONS ACTIONS

BAYESIAN NETWORK
KNOWLEDGE BASE

(OWL)

PERCEPTION
HANDLER

AGENT
IMPLEMENTATION

SPECIFIC
COMPONENTS

BAYESIAN
INFERENCE

KB QUERYKB UPDATE

Current Situation
and Evidences New Situation

Answer

Bayesian
Network

Knowledge

Selected
Bayesian Network

Knowledge

Queried
Bayesian Network
Knowledge

Query

Answer

Query

Query

Fig. 5. Bayesian Agent Internal Architecture

are the Current Situation of a Bayesian network and a set of Evidences. The
Bayesian Inference output is the New Situation with its probabilities recalcu-
lated considering the Evidences. It is worth to point out that both situations are
individuals of the BayesianNetwork class and that the Evidences are Evidence
class individuals. The New Situation resulting from the inference process consti-
tutes the most up-to-date knowledge that the agent has about its domain. The
presence of this component is indispensable since updated knowledge is necessary
to support the agent decisions and actions.

The KB Query component receives queries from Agent Implementation Specific
Components, Perception Handler and KB Update. These queries can return events
(states) and their occurrence probabilities, causal relations between variables and
other information that can be inferred from the Bayesian networks knowledge
base. Queries from the agent specific components usually are performed to aid the
agent in its decision making process. The queries forwarded by Perception Handler
are related to knowledge that external agents need to be informed about. Finally,
the queries from the KB Update component are executed with the purpose of se-
lecting which information will be inserted on the KB.

The core of the interoperability relies on the Bayesian network ontology. It
provides the fundamental domain concepts among the Bayesian agents making

82 E.R. Santos, M.S. Fagundes, and R.M. Vicari

possible their knowledge exchange. The architecture supports the knowledge
representation in a broader way, not only in the interaction with other Bayesian
agents. The architecture also provides the means for the knowledge maintenance.

4.2 Interoperability Example

An example of interoperability between two Bayesian agents, Agent X and Agent
Y, is illustrated in the Figure 6. Both agents have one Bayesian network in
its knowledge base. Their Bayesian networks are different, but they have one
node, labeled A, which represents the same information in both networks. In
our approach, the ChanceNode, ChanceVariable and State classes have a prop-
erty named hasLabel, which may indicate individuals that add semantics to the
concepts represented by those Bayesian network elements.

The Bayesian network of Agent X has three nodes, labeled A, B and C. It is
depicted only the current situation Sm of the network of the Agent X. In the sit-
uation Sm, the node A has an evidence that indicates the occurrence of the state
TRUE. The Bayesian network of the Agent Y has two nodes, labeled A and D.
It is shown the last two situations of the Agent Y network. The first, named Sn,
represents the current situation before the execution of the inference process that
considered the received evidence in the node A. The second is the actual situation,
called Sn+1, resulting from the inference process. The inference is illustrated in
the figure by a gray arrow from the situation Sn to the situation Sn+1.

A message exchanged among Agent X and Agent Y is represented by the
gray arrow between them. The message, written in OWL language, contains the
evidence associated with the node A. In the bottom we present a snippet of the
OWL source code corresponding to the message content.

< f "Label_1">
< "{...}#string">A< >

< >
< "Label_2">

< "{...}#string">TRUE< >
< >
< "Label_3">

< "{...}#string">FALSE< >
< >
< "PriorChanceVariable_1">

< "#Label_1"/>
< >

{...}
< >
< >

{...}
</ >

< >
< "ChanceNode_1">

<
"#PriorChanceVariable_1"/>

< "#Label_1"/>
< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

Label rd :ID=

name rdf:datatype= /name

/Label

Label rdf:ID=

name rdf:datatype= /name

/Label

Label rdf:ID=

name rdf:datatype= /name

/Label

PriorChanceVariable rdf:ID=

hasLabel rdf:resource=

hasState

/hasState

hasMarginalDistribution

hasMarginalDistribution

/PriorChanceVariable

ChanceNode rdf:ID=

hasChanceVariable

rdf:resource=

hasLabel rdf:resource=

/ChanceNode

Evidence rdf:ID=

hasLabel rdf:resource=

probability rdf:datatype= /probability

hasNode rdf:resource=

/Evidence

OWL

Agent X

e
A

B

TRUE

FALSE

1.0

0.0

C A
TRUE

FALSE

0.7

0.3

D
TRUE

FALSE

0.25

0.75

e
A

TRUE

FALSE

1.0

0.0

D
TRUE

FALSE

0.1

0.9

A

e Agent Y

Sn

Sn+1

Sm

message

inference

EVIDENCE

TRUE

FALSE

1.0

0.0

Fig. 6. Bayesian Agents Interoperability Example

Interoperability for Bayesian Agents in the Semantic Web 83

Following the flow of information, Agent X sends to Agent Y a message
containing the evidence associated with the node A. Upon receiving the OWL
message, the Agent Y updates its knowledge base by inserting the content of
the message in it. Since the state of A is known, it is necessary to perform
the inference to recalculate the probabilities associated with the node D. The
inference generates a new situation Sn+1 from the situation Sn, considering the
evidence in the node A.

5 Case Study

The goal of this case study is to demonstrate a Bayesian knowledge exchange
among the Social Agent and the Student Model Agent. They are Bayesian agents
that belongs to PortEdu and AMPLIA [17] respectively. The idea is present a
way to apply our agent architecture, allowing the Student Model Agent to send
Bayesian information to the Social Agent [5].

PortEdu, a multiagent portal that hosts educational systems like Intelligent Tu-
toring Systems (ITS), provides infrastructure and services for the systems through
an agent society. One of these agents is the Social Agent, responsible for organizing
the users in groups considering cognitive and emotional aspects.TheAMPLIA, one
of the educational systems hosted in PortEdu, is an intelligent multiagent learning
environment that focuses on the medical area. The functionalities of the AMPLIA
are also provided by an agent society. The Student Model Agent, part of the AM-
PLIA multiagent system, represents the student beliefs in a specific domain and
the confidence degree this learner has on the built network model.

Figure 7 illustrates a view of PortEdu in relation to its supporting platform.
The agents of PortEdu, inside the doted circle, the AMPLIA agents and also
agents from other ITS are part of the same FIPA platform, allowing direct
interaction among the agents of the society.

The main objective of the Social Agent is to improve student’s learning stimu-
lating his interaction with other students, tutors and professors. The interaction
is stimulated by recommending the students to join workgroups in order to
provide and receive help from other students. The Social Agent’s knowledge is
implemented with Bayesian networks. In these networks it is represented stu-
dent features such as social profile, acceptance degree, sociability degree, mood
state, interest, commitment degree, leadership and performance. Figure 8 depicts
the Bayesian network related to the student features. However, to communicate
with PortEdu and AMPLIA agents, it is necessary to express such probabilis-
tic knowledge in a way that these agents may process it. Such requirement is
addressed using our agent architecture.

We begin the description of the architecture integration in the Social Agent
specifying how the Knowledge Base component is implemented. The knowledge
base is composed by the Bayesian network ontology specification (Section 3)
and the ontology individuals (i.e. Bayesian networks, evidences, situation tran-
sitions). The network illustrated in the Figure 8, in example, is stored in the
knowledge base of the Social Agent as a BayesianNetwork class individual. The

84 E.R. Santos, M.S. Fagundes, and R.M. Vicari

PortEdu Agents

User
Profile

FIPA
Platform

AMPLIA ITS 1 ITS 2

...

Social
Agent

Info.
Retrieval

Fig. 7. PortEdu platform

Interest Commitment

Performance

AffectiveState

PersonalityTraits

Humor Sociability Acceptance

Fig. 8. Bayesian network representing student features

ontology specification and initial population of the knowledge base were created
in OWL using the Protégé tool [18].

The interaction of the Social Agent with other agents is done following the
FIPA specifications, which are considered the current standard for interoper-
ability among heterogeneous agents and, since 2005, are sponsored by IEEE.
Considering the relevance of the FIPA standards, PortEdu adopts them for the
platform specification and agent communication. The Social Agent was devel-
oped using the JADE [19] framework, which provides a FIPA-compliant middle-
ware for multiagent system development. Developing an agent with this kind of
abstraction allows more reutilization and directs the programming towards the
agent-oriented paradigm.

We implemented the Perception Handler, KB Update, KB Query and Bayesian
Inference as JADE Behaviors (implementations of agent’s tasks) of the Social
Agent. The Perception Handler manages interactions in compliance with FIPA
protocols specifications, using JADE communication resources. In order to allow

Interoperability for Bayesian Agents in the Semantic Web 85

direct access to the Knowledge Base for the KB Update component we used the
Jena [20] toolkit, which provides support for applications using OWL. Specifically,
the current implementation of the KB Update component uses the Jena API to
create and insert new individuals on the KB. The KB Query component also re-
lies on Jena to execute the queries on the base. The Bayesian Inference compo-
nent adopts the same algorithm used in the AMPLIA system. The inference is
performed every time a new evidence is provided.

The Agent Implementation Specific Components of the Social Agent were im-
plemented using a BDI approach, where beliefs are represented through Bayesian
networks (Knowledge Base component). In this approach, our agent believes that
a state of a chance variable has a probability of occurrence given a set of con-
ditions imposed by the parent variables. Assuming that desires correspond to
states of affairs that an agent wishes to bring about, this approach represents
this mental states through states of chance variables that the agent desires to
observe. Intentions are also represented in this way, since they are desires that an
agent has committed to achieve. The beliefs provide support to the deliberative
process, responsible for deciding which states of affairs the agent will intend to
achieve. The BDI deliberative process interacts with the Knowledge Base com-
ponent (beliefs) through the KB Query component. The actions are associated
with the intentions selected by the agent. Since our focus in this paper is on the
proposed architecture components and its contributions to interoperability of
Bayesian agents, we do not detail the deliberative process and action execution.

Since the architecture is implemented in the Social Agent, it is possible to
perform an interaction aiming Bayesian knowledge exchange. The particular in-
teraction defined in this section describes the interoperation of Bayesian evidence
from Student Model Agent to Social Agent. The Figure 9 illustrates the Student
Model Agent sending a FIPA-ACL message to Social Agent. The message per-
formative is an inform, the content language is OWL and the agreed ontology
specifies the Bayesian network domain.

In the message content is the OWL code of an Evidence individual that in-
dicates the observation of the state Good in the node Humor. The reception of
this evidence by the Social Agent will trigger the Bayesian inference process,
generating a new situation in the Bayesian network illustrated in the Figure 8.

6 Conclusion and Future Work

In this paper, we present a way to interoperate Bayesian network knowledge
among agents. In order to achieve it, we defined a Bayesian agent internal
architecture (Section 4), an ontology to model the Bayesian network domain
(Section 3), and developed a case study (Section 5) to demonstrate the inte-
gration of the architecture with the Social Agent, dealing with interoperability
issues in the PortEdu environment.

Our approach to represent uncertain knowledge, differently from PR-OWL
and PACL, does not propose any modification in standards like OWL or FIPA.
We apply the current standards to provide a Bayesian knowledge representation

86 E.R. Santos, M.S. Fagundes, and R.M. Vicari

Social AgentStudent
Model Agent

PERFORMATIVE:

SENDER:

RECEIVER:

LANGUAGE:

ONTOLOGY:

CONTENT:

inform

StudentModelAgent@PortEdu

SocialAgent@PortEdu

OWL

Bayesian Network

< f "Label_1">
< "{...}#string">Humor< >

< >
< "Label_2">

< "{...}#string">Good< >
< >
{...}
< "ChanceNode_1">

< "#Label_1"/>
{...}

< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

Label rd :ID=

name rdf:datatype= /name

/Label

Label rdf:ID=

name rdf:datatype= /name

/Label

ChanceNode rdf:ID=

hasLabel rdf:resource=

/ChanceNode

Evidence rdf:ID=

hasLabel rdf:resource=

probability rdf:datatype= /probability

hasNode rdf:resource=

/Evidence

FIPA-ACL

Fig. 9. Interoperability among Social Agent and Student Model Agent

through OWL. This approach allows our Bayesian agents to interoperate their
knowledge and also contributes to researches on the expression of uncertain
knowledge on the Semantic Web.

We define an internal architecture that provides support for knowledge in-
tense agents to interoperate their knowledge. In this case, the interoperation is
in the scope of Bayesian knowledge regarding an adequate way to express it.
Besides that, the architecture provides resources for maintaining such Bayesian
knowledge. Maintenance features allow the execution of updates, queries and an
inference process to propagate evidences to the corresponding networks present
in the knowledge base. The interoperability provided by this architecture aids
agent specific decision making since it facilitates the discovery of new knowledge,
allowing the agent to consider evidences that were not part of its original KB.

In our case study we concluded that our proposal can be integrated with the
FIPA standards, more specifically with the FIPA-ACL. The adoption of OWL as
a content language for ACL messages handles the issue of a common knowledge
language. Our OWL ontology aggregates meaning to the message content. It is
necessary to add a high-level architecture component (at FIPA level) to ensure
content language compliance. Such component would be similar to the one used
to guarantee language and protocol compliance. Currently, the content language
is specified through a field in the message envelope, which needs to be integrated
with a specific component to verify OWL language. The utilization of OWL
and the specification of the ontology to contextualize the content, allow the
expression of knowledge in an open and explicit way.

Interoperability for Bayesian Agents in the Semantic Web 87

Future works are fourfold. The first is concerned with the executability as-
pects of the Bayesian networks. Its goal is to represent, in the ontology, concepts
involved in the inference, expliciting this operational knowledge. This kind of
knowledge allows an agent to share the way that the inference process is per-
formed. The second corresponds to an extension of the ontology to describe
also influence diagrams. In order to represent this kind of probabilistic network,
decision and utility nodes must be incorporated in the ontology. The third is
related to the communication of BDI mental states abstracted through Bayesian
networks. Cooperative agent systems can be developed with that framework by
communicating desires and intention to be achieved collectively. The last consists
of aggregating meaning to the chance variables and states in the Social Agent
case study. It can be done by developing an ontology to specify the concepts used
in the Social Agents Knowledge Base. Once developed the ontology, to explore
this domain specific knowledge to improve the agents cognitive processes.

References

1. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communica-
tion language. In: Proceedings of the 3rd International Conference on Information
and Knowledge Management, Gaithersburg, MD, USA, pp. 456–463. ACM Press,
New York (1994)

2. The Foundation for Intelligent Physical Agents: Specifications (2006),
http://www.fipa.org

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Ameri-
can 284(5), 34–43 (2001)

4. Nakayama, L., Vicari, R.M., Coelho, H.: An information retrieving service for dis-
tance learning. Transactions on Internet Research 1(1), 49–56 (2005)

5. Boff, E., Santos, E.R., Vicari, R.M.: Social agents to improve collaboration on
an educational portal. In: IEEE International Conference on Advanced Learning
Technologies, pp. 896–900. IEEE Computer Society, Los Alamitos (2006)

6. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to OWL:
The making of a web ontology language. Journal of Web Semantics 1(1), 7–26
(2003)

7. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. Technical re-
port, W3C (February 2004)

8. Ding, L., Kolari, P., Ding, Z., Avancha, S., Finin, T., Joshi, A.: Using Ontologies
in the Semantic Web: A Survey. Technical report, UMBC (July 2005)

9. Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Hawaii
International Conference On System Sciences (2004)

10. da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A bayesian ontology lan-
guage for the semantic web. In: Workshop on Uncertainty Reasoning for the Se-
mantic Web, International Semantic Web Conference, pp. 23–33 (2005)

11. Gasevic, D., Devedzic, V.: Petri net ontology. Knowledge Based Systems 19(4),
220–234 (2006)

12. Breton, E., Bézivin, J.: Towards an understanding of model executability. In: In-
ternational Conference on Formal Ontology in Information Systems, pp. 70–80
(2001)

http://www.fipa.org

88 E.R. Santos, M.S. Fagundes, and R.M. Vicari

13. Gluz, J.C., Flores, C.D., Seixas, L., Vicari, R.M.: Formal analysis of a probabilis-
tic knowledge communication framework. In: IBERAMIA/SBIA Joint Conference
(2006)

14. Santos, E.R., Boff, E., Vicari, R.M.: Semantic Web Technologies Applied to Inter-
operability on an Educational Portal. In: Ikeda, M., Ashley, K.D., Chan, T.-W.
(eds.) ITS 2006. LNCS, vol. 4053, pp. 308–317. Springer, Heidelberg (2006)

15. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Net-
works and Expert Systems. Springer, Heidelberg (1999)

16. Pearl, J.: Belief networks revisited. Artificial Intelligence 59(1-2), 49–56 (1993)
17. Vicari, R.M., Flores, C.D., Silvestre, A.M., Seixas, L.J., Ladeira, M., Coelho, H.: A

multi-agent intelligent environment for medical knowledge. Artificial Intelligence
in Medicine 27(3), 335–366 (2003)

18. Stanford University: The Protégé Ontology Editor and Knowledge Acquisition Sys-
tem, http://protege.stanford.edu

19. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent frame-
work. In: Proceedings of the 4th International Conference and Exhibition on The
Practical Application of Intelligent Agents and Multi-Agent Technology, pp. 97–
108 (1999)

20. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the semantic web recommendations. Technical report, Hewlett
Packard Laboratories (December 2003)

http://protege.stanford.edu

The A&A Programming Model and Technology

for Developing Agent Environments in MAS

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

DEIS, Alma Mater Studiorum – Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,mirko.viroli,andrea.omicini}@unibo.it

Abstract. In human society, almost any cooperative working context
accounts for different kinds of object, tool, artifact in general, that hu-
mans adopt, share and intelligently exploit so as to support their working
activities, in particular social ones. According to theories in human sci-
ences, such entities have a key role in determining the success or failure
of the activities, playing an essential function in simplifying complex
tasks and—more generally—in designing solutions that scale with ac-
tivity complexity. Analogously to the human case, we claim that also
(cognitive) multi-agent systems (MAS) could greatly benefit from the
definition and systematic exploitation of a suitable notion of working
environment, composed by different sorts of artifacts, dynamically con-
structed, shared and used by agents to support their working activities.
Along this line, in this paper we introduce and discuss a programming
model called A&A (Agents and Artifacts), which aims at directly mod-
elling and engineering such aspects in the context of cognitive MAS.
Besides the conceptual framework, we present the current state of proto-
typing technologies implementing A&A principles—CARTAGO platform
in particular—, and show how they can be integrated with existing cog-
nitive MAS programming frameworks, adopting the Jason programming
platform as the reference case.

1 Introduction

“Artifacts play a critical role in almost all human activity [...]. Indeed
[...] the development of artifacts, their use, and then the propagation of
knowledge and skills of the artifacts to subsequent generations of humans
are among the distinctive characteristics of human beings as a specie”,
Donald Norman, [8]
“The use of tools is a hallmark of intelligent behaviour. It would be hard
to describe modern human life without mentioning tools of one sort or
another”, Robert Amant, [2]

In their articles, Norman [8] and Amant [2] remark—in different contexts—
the fundamental role that tools and, more generally, artifacts play in human
society. Artifacts and tools here could be understood as whatever kinds of device

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 89–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 A. Ricci, M. Viroli, and A. Omicini

explicitly designed and used by humans so as to mediate and support their
activities, especially social. Analogous observations are found in the work of
Agre and Horswill in their Lifeworld analysis [1], as well as in the work of
Kirsch [5,6]. Actually, such a perspective is central in theories developed in the
context of human sciences, such as Activity Theory and Distributed Cognition,
and currently taken as a reference by computer science related disciplines such as
CSCW (Computer Supported Cooperative Work) and HCI (Human-Computer
Interaction) [7]. There, a fundamental point is devising out the best kind of
artifacts to populate humans’ fields of works, and to organise them so as to
improve as much as possible the performance of their activities, in particular
coordinative ones [13,6].

Analogously to human society, we think that such a perspective is and will
be fundamental also in the context of agent societies, and in particular for de-
signing and programming complex software systems based on cognitive MAS.
Quite provocatively, analogously to the human case, we think that the next
evolution step in the development of cognitive MAS will mandatorily require
the definition of MAS models and architectures with agents situated in suitable
working environments. There, agents autonomously—besides speaking to each
others—construct, share, and co-operatively use different kinds of artifact, de-
signed either by MAS designers or by the agent themselves, to perform MAS
activities. Indeed, this notion of environment is quite different with respect to
the one traditionally adopted in mainstream cognitive agent theory: there, the
environment is typically conceived as something “out of the MAS”, then not a
subject of design. On the contrary, the notion of “working environment” pro-
motes MAS environment as an essential part of the MAS to be explicitly designed
and fruitfully exploited by agents in their working activities.

Along this line, in this paper we introduce and discuss a first programming
model called A&A (Agents and Artifacts) which aims at directly modelling and en-
gineering working environments in the context of cognitive multi-agent systems.
Such a perspective is strenghtened by recent efforts in AOSE (Agent-Oriented
Software Engineering) that remark the fundamental role of the environment for
the engineering of MAS [14]. The A&A approach can be considered an instance
of such approaches, with some specific peculiarity: (i) abstractions and general-
ity—the aim is to find a basic set of conceptual abstractions and related theory
which, analogously to the agent abstraction, could be general enough to be the ba-
sis to define concrete architectures and programming environments, but specific
enough to capture the essential properties of systems; (ii) cognitive—analogous to
designed environment in human society, the properties of such environment ab-
stractions should be conceived to be suitably and effectively exploited by cognitive
agents, as intelligent constructors / users / manipulators of the environment.

Besides the abstract programming model, in this paper we describe also the
concrete technologies developed to experiment the model: in particular we dis-
cuss CARTAGO technology, a platform for programming and supporting the
execution of artifact-based working environments, developed on top of the Java
platform, and its integration with the Jason agent programming environment.

The A&A Programming Model and Technology 91

The basic notion of artifact has been already introduced and published else-
where [11,9,10], and the same applies for the first version of CARTAGO technology
[12]. On the one side, besided purely conceptual papers such as [9], papers such
as [11,10] can be considered first steps introducing the concept of artifact for pro-
gramming MAS, without having a reference programming model defined here—
called A&A—and related functioning technologies, i.e. CARTAGO, that can be in-
tegrated to existing platform. On the other side, the artifact programming model
and its implementation in CARTAGO technologies has been substantially evolved
with respect to the most recent one, described in [12]. In particular, the basic model
of usage-interface and operation presented in [12] is quite simple and is not able
to properly take into account the possibility to have the concurrent execution of
operations on an artifact (the interested reader is forwarded to the paper for the
details). Such a model has been completely revised, and this new version—which
substantially change the way a MAS programmers can adopt to program artifact
operations and behaviour—is described in detail in this work. Besides this, the
work published in [12] is more oriented on the environment / infrastructure level:
in this paper instead, besides describing in detail CARTAGO, we focus more on the
A&A programming model and CARTAGO is described as an existing functioning
technology supporting such a model.

The remainder of the paper is organised as follows. First, we provide a descrip-
tion of the basic concepts and principles of A&A (Section 2), by introducing an
abstract model embedding such principles (Section 2.3). Then, we briefly present
the current models and technologies that have been developed for concretely pro-
totyping MAS applications in the A&A perspective (Section 3)—among which
the one called CARTAGO—and discuss the issue of integration of such technolo-
gies with existing cognitive MAS programming platform, adopting Jason as our
reference case study. Finally, we conclude the paper with some final remarks,
and sketch some future line of work (Section 4).

2 Programming Model Building Blocks

2.1 Artifacts and Workspaces

A working environment in A&A is defined as the part of the MAS that is de-
signed and dynamically constructed and used by agents to support their working
activities. MAS programmers design and define the types of artifacts that agents
will dynamically instantiate and cooperatively use.

A working environment is conceived as a dynamic set of artifacts, organised in
workspaces. Workspaces are the logical containers of artifacts, useful to define the
topology of the working environment. A workspace provides a notion of locality
for agents: an agent can work only with artifacts belonging to the workspace
where it is playing, but can be conceptually situated in multiple workspaces at
the same time, possibly distributed on different Internet nodes. This concept can
be used to define the distribution model of an application at an abstract level: a
working environment—which corresponds to a possibly distributed application

92 A. Ricci, M. Viroli, and A. Omicini

Fig. 1. (Left) Abstract representation of an artifact. (Right) Abstract representation
of a working environment with two workspaces, with some artifacts of different kinds
inside.

or MAS—can account for one or multiple workspaces, possibly spread among
multiple network (Internet) nodes.

Current model does not explicitly take into the account security and organ-
isation issues: for examples roles that can be defined in a workspace and the
possible permits related to roles. These aspects are part of future work: we plan
to adopt RBAC-like approach as a basic organisation and security model, as we
did for the TuCSoN coordination model [15].

The notion of artifact is the core abstraction of the programming model:
it is meant to represent any entity belonging to the working environment—
hence existing outside the agent mind—that is created, shared & used (and
eventually disposed) by agents to carry on their activities, in particular social
ones. So, an artifact (type) is typically meant to be explicitly designed by MAS
engineers so as to encapsulate some kind of function, here synonym of “intended
purpose”. An abstract representation of an artifact is shown in Fig. 1 and it
is very similar to artifacts as found in human society. The functionality of an
artifact is structured in terms of operations, whose execution can be triggered
by agents through artifact usage interface. Analogously to usage interface of
artifacts in our world (think, for example, of a coffee machine), an artifact usage
interface in A&A is composed of a set of commands or controls that agents can use
to trigger and control operation execution (such as the control panel of a coffee
machine), each one identified by a label (typically equals to the operation name
to be triggered) and a list of input parameters. The usage interface can change
dynamically, according to state of the artifact; in other words, it is possible
to design artifacts that expose a different usage interface according to their
functioning stage. Besides the control to act, the usage interface might contain
also a set of observable properties (think of the coffee machine display); that is,
properties whose dynamic values can be observed by agents without necessarily
interacting with (or operating upon) the artifact.

The execution of an operation upon an artifact can result both in changing
the artifact’s inner (i.e., non-observable) state, and in the generation of a stream
of observable events that can be perceived by agents that are using or simply

The A&A Programming Model and Technology 93

observing the artifact. Such a model strictly mimics the way in which humans
use their artifacts: a simple example is the coffee machine, whose usage interface
includes suitable controls—such as the buttons—and means to make (part of)
the machine behaviour observable—such as displays—and to collect the results
produced by the machine—such as the coffee can. It’s worth remarking here
the differences between observable properties and observable events. The former
are dynamic and persistent attributes that belong to an artifact and that can
be observed by agents without interacting with it (i.e. without using the ui-
controls). Like the display of a coffee machine. The latter are non-persistent
information, as signals carrying also an information content. Like the sound
emitted by a coffee machine when the coffee is ready.

Artifacts can embed complex functionalities: accordingly, operations executed
can be complex and an articulated operation model is provided for this purpose.
Generally speaking, operation execution can be conceived as a process (from a
conceptual point of view) combining the execution of possibly multiple atomic
guarded operation steps. Multiple operations can be in execution upon an ar-
tifact by interleaving the execution of the operation steps. In order to avoid
interferences, during the execution of a single operation step, the usage inter-
face is disabled. This approach, in the overall, makes it possible to support the
execution of multiple operations concurrently on the artifact, keeping mutual
exclusion in artifact state access.

Analogously to artifacts in the human case, in A&A each artifact is meant to
be equipped with a manual describing the artifact’s function (i.e., its intended
purpose), the artifact’s usage interface (i.e., the observable “shape” of the arti-
fact), and artifact’s operating instructions (i.e., usage protocols or simply how
to correctly use the artifact so as to take advantage of all its functionalities). A
manual is meant to be inspected and used at runtime by agents, in particular in-
telligent agents, for reasoning about how to select and use artifacts so as to best
achieve their goals. Accordingly, suitable formal languages and ontologies could
be defined for manual description. Currently, no specific commitments towards
specific technologies have as yet been made, as this is part of ongoing work.

Finally, as a principle of composition, artifacts can be linked together, in
order to enable artifact–artifact interaction. This is realised through link in-
terfaces, which are analogous to interfaces of artifacts in the human case (e.g.
linking/connecting/plugging the earphones into an MP3 player, or using the re-
mote control with a TV). In the overall link interfaces serve two purposes: on the
one side, to explicitly define a principle of composability for artifacts, enabling
the ruled construction of articulated and complex artifacts by means of simpler
ones; on the other side, to realise distributed (composed) artifacts, by linking
artifacts belonging to different workspaces.

2.2 Agent Bodies

In this overall picture, nothing is said about the specific cognitive model of the
agent: actually A&A is meant to be orthogonal to this aspect: agents are sim-
ply conceived as autonomous entities executing some kind of working activities,

94 A. Ricci, M. Viroli, and A. Omicini

either individually or collectively—typically in order to achieve some individual
or social goal, or to fulfill some individual or social task. Such activities—from
an abstract point of view—are seen as the execution of sequences of actions,
which according to the A&A model can be roughly classified as: (i) internal ac-
tions, (ii) communicative actions, involving direct communications with one or
more agents through some kind of ACL, and (iii) pragmatical actions, as in-
teractions within working environments that concern construction, sharing, and
use of artifacts.

Despite their specific cognitive model / architecture, in order to execute ac-
tions over the artifact and perceive observable events, agents must be situated in
a working environment: for this purpose, the notion of agent body is introduced.
The agent body functions as the medium through which the agent mind—i.e.
those parts that are designed and programmed according to a certain kind of cog-
nitive model / architecture—can sense and affect a working environment. Such a
notion is essential to decouple—for engineering purposes—the agent mind from
the working environment in which the agent is situated, so as to be able to use
A&A with different kinds of programming models for agent mind.

Agent bodies contain effectors to perform actions upon the working environ-
ment, and a dynamic set of sensors to collect stimuli from the working environ-
ment. Sensors in particular play here a fundamental role, that of perceptual mem-
ory, whose functionality accounts for keeping track of stimuli arrived from the
environment, possibly applying filters and specific kinds of “buffering” policy. Ac-
cording to the specific interaction modality adopted for using and observing arti-
facts, as described later in this section, it might be useful to provide agents with
basic internal actions for managing and inspecting sensors, as a kind of private
memory. In particular, it could be useful for an agent to organise in a flexible way
the perception of observable events, possibly generated by multiple different arti-
facts that an agent can be using for different, even concurrent, activities.

2.3 The Agent Programming Interface

In this subsection we provide an abstract description of the basic interface avail-
able to agent minds to play inside a working environment. Such an interface
accounts for three basic groups of actions: (i) join and leave workspaces; (ii) use
an artifact by acting on its usage interface and perceive observable events gen-
erated by artifacts; (iii) observe an artifact. Table 1 provides a synthetic view
of the set of actions, grouped into the three main groups; as for the syntax, a
pseudo-code first-order logic-like syntax is adopted, while semantics is described
informally. Atoms AName, WName and SName are used to represent a unique name
(identifier) for respectively artifact instances, workspaces and sensors. Following
the semantics adopted in the cognitive agent-oriented programming approaches
considered here, an action consists in the atomic execution of a statement which
can result in changing the agent’s state and/or interacting with the agent’s en-
vironment, and can succeed or fail.

The first group of actions (labelled 1–2) are useful for managing a work-
ing session inside a workspace. Intuitively, join makes it possible to “enter” a

The A&A Programming Model and Technology 95

Table 1. Basic set of actions to interact with A&A work environments. + is used for
optional parameters, ? for input parameters.

(1) joinWorkspace(WName,+Node)

(2) quitWorkspace

(3) use(AName,UIControlName(Params),+SName,+Timeout,+Filter)

(4) sense(SName,?Perception,+Filter,+Timeout)

(5) focus(AName,SName,+Filter)

(6) stopFocussing(AName)

(7) observeProperty(AName,PropertyName,?Property)

workspace, whose name is specified as a parameter and quit to leave the cur-
rent workspace. Since workspaces are meant to be distributed over a network,
optionally the node where the workspace resides can be specified.

The second group of actions (labelled 3–4) concerns the use of artifacts. In
particular use action accounts for using the artifact identified by AName, by
acting on the UIControl usage-interface control, specifying some Params pa-
rameters, and optionally specifying a sensor SName to be used to collect the
events generated by the artifact, a filter Filter and a timeout Timeout. The
action succeeds if the specified artifact exists and its usage interface actually
has the specified control, and as a result the related operation is triggered for
execution. Then, if a sensor has been specified, every observable event subse-
quently generated by the artifact, as effect of the operation execution, is made
observable to the agent as a stimulus artifact_event(AName,Event) collected
in the sensor. The filter can be used to specify which kinds of events the agent
is interested in perceiving. If the usage interface of the artifact is disabled when
executing the action, for instance because the artifact is executing an operation
(step), then the agent action is suspended until the usage interface is enabled
again; the timeout specifies how long the agent can wait before considering the
action as failed. Then, a sense action is provided to inspect the content of a
sensor (i.e. the perceptual memory), so that the agent can become aware of any
new percepts. In particular, the action succeeds if within Timeout time an event
(stimulous) matching the specified filter Filter is found in the specified sensor
SName. In that case, Perception is bound with such event. Both the timeout
and the filter can be omitted. The same sensor can be used for collecting events
of different usage interactions, possibly with different artifacts. It’s worth re-
marking that the execution (and completion) of the use action is completely
asynchronous with respect to the execution of the operation by the artifact and
to the possible consequent generation of events. It is synchronous however with
respect to the presence of the specified ui-control in the usage interface: if the ac-
tion succeeds, then it means that such ui-control was part of the usage interface,

96 A. Ricci, M. Viroli, and A. Omicini

that it has been “pressed” and that the related operation has been triggered for
being executed (as soon as its guard is satisfied).

The third group of actions (labelled 5–7) concerns artifact observation, i.e.
the capability of perceiving artifacts observable events and properties without
directly interacting with them. The focus action can be used to start a con-
tinuous observation of an artifact (intuitively, to focus one’s attention on that
artifact so as to observe any changes that occur in it over time). The action
succeeds if the AName artifact exists, and as an effect every observable event
generated by the artifact (despite the specific operation that caused it, possi-
bly executed by any other agent) is made observable to the agent as a stimulus
artifact_event(AName,Event) collected in the specified sensor. Also for focus,
a filter can be specified in order to select which kinds of event to actually observe.
stopFocussing is used to stop observing the artifact. It’s worth remarking here
the differences between focus and sense actions: sense is an internal action,
since it inspects a sensor (which is considered part of the agent); focus, in-
stead, is external, enabling continuos observation of events that directly cause
belief base update in the first modality, and sensor content update in the sec-
ond modality. Finally observeProperty can be used to inspect the observable
properties of the specified AName artifact, specifying the name PropertyName of
the property to be observed. The action succeeds if the AName artifact exists and
has a property with the specified name, and as result the current value of the
property is bound to Property.

This abstract model is meant to be as much as possible orthogonal to the
model(s) adopted for defining agent mind at the agent level. This should make
it easier to integrate A&A concrete models and technologies with existing agent
technologies—as described in Section 3.2.

2.4 The Artifact Programming Interface

Besides the API to use artifacts, a programming model for defining artifact types
is given: Table 2 shows an abstract description of the main primitives used to
define artifacts behaviour.

An artifact type or template defines the structure and behaviour of artifacts
instances of such a type. For some extent, an artifact type is quite similar to the
notion of class in Object-Oriented Programming, with artifacts analogous to ob-
jects, and to the notion of monitor, as defined in concurrent programming. As in
the case of objects, the structure defines the artifact inner state and working ma-
chinery hidden to agent users. The behaviour is structured in a set of operations,
which define in the overall artifact function. An operation encapsulates the com-
putational and interaction behaviour—such as the update of the internal state and
the generation of observable events—so as to provide some kinds of functionality.
Operations execution is triggered and controlled by acting on the controls which
are part of the artifact usage interface. During the execution of an operation, ob-
servable events (signals) can be generated by using a specific primitive, signal
(label 1 in Table 2), specifying the event content as a labelled tuple.

The A&A Programming Model and Technology 97

Table 2. Basic API available for programming an artifact + is used for optional pa-
rameters, ? for input / output parameters.

(1) signal(Event)

(2) nextStep(OpStep(Params),+Guard(Params))

(3) switchToObsState(StateName)

(4) updateObsProperty(Property)

(5) readObsProperty(?Property)

In order to enforce mutual exclusion in updating artifact state on the one
side and allow for concurrent operations execution on the other side, artifact
operations can be composed by one or multiple operation steps, which are meant
to be executed atomically. At a given time only one operation (step) can be in
execution: multiple operations can be executed concurrently by interleaving their
steps. For each step a guard can be defined, which specifies when the step—once
it has been striggered in the context of an operation—can actually be executed.
Guards represent the condition that must be satisfied, as a predicate over the
artifact state, to execute a step. So, an operation (step) is first triggered by
agent user, the executed when the guard is satisfied. A step can trigger other
steps, by means of the nextStep primitive (label 2 in Table 2), specifying the
operation step to be executed and possibly the guard. An operation is considered
completed when no more steps have been triggered. In the overall, this model
makes it possible to design a complex articulated operation, that—for instance—
can be controlled by using different controls in different times in the user interface
before being completed, or—as another example—would need the execution of
other operations to complete.

Besides the analogies with classes and monitors in object-oriented and concur-
rent programming, it’s worth remarking here the deep difference with respect to
those concepts, in particular for what concerns the interaction model: by virtue
of agent autonomy, artifact operation (step) execution does not involve any con-
trol flow from the invoker agent to the invoked artifact, i.e. is not a method or
function call.

The usage interface of an artifact can change according to artifact observable
state, exposing different sets of operations and observable properties according
to the specific functioning state of the artifact. The notion of observable state
is adopted to structure the behaviour of an artifact in a set of labelled states,
that can be recognised (observed) by the artifact users. For each artifact type
a finite set of labelled observable states can be defined. Each artifact instance
has a current observable state, that can be changed dynamically during artifact
functioning by means of the switchToObsState primitive (label 3 in Table 2,
specifying the label of the target observable state. For each observable state a

98 A. Ricci, M. Viroli, and A. Omicini

different usage interface can be defined: this feature makes it possible to set the
appropriate usage interface according to the functioning stage of the artifact.
Dynamically, an agent can trigger the execution of an operation on an artifact
if and only the operation is (in that moment) part of the usage interface; if
the operation is not part the usage interface, the agent action fails. Observable
properties can be defined as labelled tuple of information that can be observed
by agents without directly using the artifacts. Basic primitives are available as
part of artifact API for updating (updateObsProperty, label 4) and reading
(readObsProperty, label 5) the value of an observable property: also properties
are represented by labelled tuples and their access is meant to be associative.

3 Prototyping Technologies

Starting from the A&A abstract model, we developed some first concrete tech-
nologies, with the objective to have concrete frameworks for prototyping MAS-
based applications engineered upon A&A basic abstractions, and for being
integrated with existing agent technologies extended with the A&A support.

A primary technology is called CARTAGO (Common ARtifact Infrastructure
for AGent Open environment), which is a framework providing essentially the
capability to define new artifacts type, suitable API for agents to work with arti-
facts and workspaces, and a runtime supporting the existence and dynamic man-
agement of working environments. Another technology is called simpA (simple
A&A programming environment), a framework extending CARTAGO with a sup-
port for defining and running agents (MAS) besides the working environments.
While CARTAGO is meant to be integrated with existing (cognitive) agent mod-
els and technologies as a seamless support to define and create artifact-based
working environments, simpA can be exploited alone to develop full-fledged ap-
plications engineered in terms of agents, artifacts and workspace. For lack of
space, in this paper simpA is not described: the interested reader can refer to
simpA web site1. Both technologies are based on Java and are available as open-
source projects freely downloadable from the project web sites2.

3.1 CARTAGO Overview

The CARTAGO architecture implements quite faithfully the abstract model de-
scribed in Section 2.3. Pragmatically, we chose Java as the programming lan-
guage to implement and map the programming model elements, adopting choices
that would favour rapid prototyping, reusing as much as possible the support
given by the Java Object-Oriented framework. In the following we briefly
describe the three main parts of CARTAGO:

– API for creating and interacting with artifact-based working environments —
These API are meant to extend the existing basic set of agent actions with

1 http://www.alice.unibo.it/simpa
2 http://www.alice.unibo.it/cartago

http://www.alice.unibo.it/simpa
http://www.alice.unibo.it/cartago

The A&A Programming Model and Technology 99

new ones, abstractly described in Section 2.3, essentially for creating and
disposing artifacts, interacting with them through their usage interface—by
executing operation and perceiving artifact observable states and events—
reading artifact function description and operating instructions, managing
sensors, and so on.

– API for defining artifact types — These API allow MAS programmers to de-
velop new types of artifacts. An artifact type can be defined by extending the
basic Artifact class provided in the API: at runtime, artifacts instances are
instances of this class. Artifact structure (internal state) is defined in terms of
instance fields of the class. Operations and operations steps body is defined by
methods tagged by @OPERATION and @OPSTEP, where the operation (step) name
and parameters are mapped onto the name and the parameter of the meth-
ods3. Guards are represented by boolean method annotated with the @GUARD

annotation. Methods representing operations / operation steps have no re-
turn argument—a return argument would be meaningless in the A&A model.
Observable events—which are the means to make agents perceive operation
results—can be generated in the body of an operation by primitives of the
kind signal, available as protected methods of the artifact. Events are col-
lected by agent body sensors as stimuli, and then perceived by agents through
sense action. Artifact function description and operating instructions, as well
as the list of the observable states, can be explicitly declared through the
@ARTIFACT MANUAL annotation preceding the artifact class declaration.

A simple example of artifact definition is shown in Fig. 2: a simple type
MyArtifact is defined, with an internal variable m and two operations, op1 and
op2, the former composed by two steps, the first one coinciding the first of the
operation and the second one, opStepA with guard canExecA triggered by the
first step by means of the nextStep CARTAGO primitive. The operation op1

initialized the variable to 1 and then completes only when the variable value
reaches the value 3, a condition that triggers the execution of the second step
which generates the observable event maxReached. Each time the operation
op2 is executed, the variable is incremented and an observable event newValue
generated. More complex and useful examples can be found in CARTAGO
distribution.

– Runtime environment and related tools — This is the part actually responsi-
ble of the life-cycle management of working environments at runtime. Con-
ceptually, it is the virtual machine where artifacts and agent bodies are
instantiated and managed that is responsible of executing operations on ar-
tifacts and collecting and routing observable events generated by artifacts
(see Fig. 3 for an abstract representation of a MAS application running on
top of CARTAGO). Some tools are also made available in CARTAGO for on-
line inspection of working environment state, in particular artifact state, and
above the observation of artifact behaviour, in terms operation executed and
events generated.

3 Annotations have been introduced with the 5.0 version of Java.

100 A. Ricci, M. Viroli, and A. Omicini

import alice.cartago.*;

class MyArtifact extends Artifact {
private int m;

@OPERATION void op1(){
m=1;
nextStep("opStepA", "canExecA");

}
@OPERATION void op2(){
m++;
signal("newValue",m);

}
@GUARD boolean canExecA(){
return m == 3;

}
@OPSTEP void opStepA(){
signal("maxReached");
m = 1;

}
}

...
ArtifactId id =

createArtifact("myArtifact", MyArtifact.class);
SensorId sid =

linkSensor(new DefaultSensor());

use(id, new Op("op1"));

while (true){
use(id, new Op("op2"),sid);
Perception p = sense(sid);
if (p.getLabel().equals("maxReached")){

break;
}

}
...

Fig. 2. (Left) A simple type of artifact, with two operations, op1 and op2, the former
composed by two steps, the first one coinciding the beginning of the operation and
the second one, opStepA with guard canExecA triggered by the first step. (Right) A
Java fragment using CARTAGO API to create an artifact, link a sensor, execute the
op1 operation and then repeatedly execute the op2 operation until a maxReached event
is observed. createArtifact and linkSensor are auxiliary actions part of the Java
CARTAGO implementation.

Fig. 3. Abstract representation of a MAS application exploiting CARTAGO

The A&A Programming Model and Technology 101

Further details about CARTAGO API and architecture, along with complete
examples, can be found on the web site.

3.2 Integration with Existing MAS Programming Environments

As mentioned previously, an important aspect of A&A and of technologies such
as CARTAGO is the possibility of integration with existing cognitive MAS archi-
tectures and models / languages / platforms, so as to extend them to create and
work with artifact-based environments.

Actually, most available agent programming models and platforms for devel-
oping general-purpose applications—such as Jason, 3APL, Jadex, JACK, and
others surveied in [3]—lack a true notion of environment, and when such a notion
is accounted for, it is typically modelled and implemented in terms of low-level
interfaces to the hosting VM or OS environment, or by considering a general
monolithic abstraction of “Environment” and of “Event”. This is perfectly rea-
sonable according to the notion of environment as traditionally dealt with in
agent theories. By integrating these platforms with A&A, the environment no-
tion is seamlessly extended with the capability for cognitive agents written in
existing programming environments to create, share and use artifacts accord-
ing to the specific needs, with MAS designers directly programming artifacts
so as to create the best working environments for supporting agent activities.
Also, existing types of artifact can be reused, especially those providing general
purpose functionalities such as the coordination artifacts. Furthermore, from a
conceptual point of view it would be possible and interesting to build MAS ap-
plications composed by heterogeneous agent societies, made of cognitive agents
programmed with different agent languages or architectures, working together
in the same working environments, and interacting through the same mediating
artifacts—besides communicating by means of the same ACL as usual.

In the following subsection we sketch the first results obtained with a concrete
case, concerning the integration of CARTAGO with the Jason agent-oriented
programming platform.

3.3 A Case Study: Jason Using CARTAGO

Jason is an interpreter written in Java for an extended version of AgentSpeak
[4], a logic-based agent-oriented programming language that is suitable for the
implementation of reactive planning systems according to the BDI architecture.
Jason is taken here is as reference case: analogous considerations can be done
using other platforms such as 3APL or Jadex.

By the integration then, it is possible to create a MAS application com-
posed by a set of Jason agents working inside the same CARTAGO environ-
ment. By default, each Jason agent has an agent body inside the CARTAGO
environment, and his basic set of external actions is extended to include the
basic ones abstractly described in Section 2.3. In particular, a Jason agent
can use an artifact by means of use and perceive artifact events collected
by its sensors through sense action, and so on. In current simple integra-
tion model, percepts that are fetched by sense action are mapped to beliefs

102 A. Ricci, M. Viroli, and A. Omicini

MAS cartagoTest {

infrastructure: Centralised

environment: CartagoEnvironment

agents:
rosa philo.asl;
beppo philo.asl;
pippo philo.asl;
maria philo.asl;
giulia philo.asl;
alfredo waiter.asl;

}

/* TABLE ARTIFACT */

import alice.cartago.*;

public class Table extends Artifact {
private boolean[] chops;

public Table(int nchops){
chops = new boolean[nchops];
for (int i = 0; i<chops.length; i++){

chops[i]=true;
}

}
@OPERATION(

guard = "chopsAvailable"
) void getChops(int lc, int rc){

chops[lc] = chops[rc] = false;
signal("chops_acquired");

}
@GUARD boolean chopsAvailable(int lc,int rc){

return chops[lc] && chops[rc];
}
@OPERATION void releaseChops(int lc, int rc){

chops[lc] = chops[rc] = true;
signal("chops_released");

}
}

Fig. 4. (Left) Definition of a Jason MAS called cartagoTest, composed by five philoso-
pher agents (rosa, beppo, pippo, maria, giulia) and a waiter agent (alfredo), sharing
a CARTAGO environment.(Right) Definition of the Table artifact type

of the type artifact event(Type,SensorId,ArtifactId,EventTime), while excep-
tions regarding timeouts elapsed during sense actions to beliefs of the kind
sensing timeout(SensorID).

Hello Philosophers! As a simple integration example, we consider the case
“Hello philosophers” used here with analogous function of the “Hello world”
example for traditional programming languages.

The example refers to the well-known problem introduced by Dijkstra in the
context of concurrent programming to check the expressiveness of mechanisms
and abstractions introduced to coordinate set of cooperating / competing com-
puting agents. Briefly, the problem is about a set of N philosophers (typically 5)
sharing N chopsticks for eating spaghetti, sitting at a round table (so each philoso-
pher share her left and right chopsticks with a friend philosopher on the left and
one on the right). The goal of each philosopher is to live a joyful life, interleaving
thinking activity, for which they actually do not need any resources, to eating ac-
tivity, for which they need to take and use both the chopsticks. The goal of the
overall philosophers society is to share the chopsticks fruitfully, and coordinate
the access to shared resources so as to avoid forms of deadlock or starvation of
individual philosophers—e.g. when all philosophers have one chopstick each. The
social constraint of the society is that a chopstick cannot be used simultaneously
by more than one philosopher.

The problem can be solved indeed in many different ways. By adopting the
A&A perspective, it is natural to model the philosophers as cooperative agents

The A&A Programming Model and Technology 103

/* WAITER AGENT */

!live.
+!live : true
<- .print("Hello world!") ;

.print("Preparing the table...") ;
createArtifact(myTable,"Table",[5]);
.print("The table is ready.") ;
.print("Assigning the chopsticks");
.send("rosa",tell,

chops_assigned(myTable,0,1));
.send("beppo",tell,

chops_assigned(myTable,1,2));
.send("pippo",tell,

chops_assigned(myTable,2,3));
.send("maria",tell,

chops_assigned(myTable,3,4));
.send("giulia",tell,

chops_assigned(myTable,4,0));
.print("Good luck.").

/* PHILOSOPHER AGENT */

!live.
+!live : true

<- .print("Hello world! Waiting to know my chopsticks...").

+chops_assigned(Table,C0,C1) : true
<- .print("I know my chopsticks, I can start my activity.");

+my_chopsticks(Table,C0,C1) ;
+wants_to_live_for_another_round.

+wants_to_live_for_another_round : true <- !think.

+!think : not(hungry)
<- .print("Thinking.");

-wants_to_live_for_another_round; +hungry.

+hungry : my_chopsticks(Table,C1,C2) &
not(got_chopsticks(C1,C2)) &
not(chopsticks_requested(C1,C2))

<- .print("Got hungry, try to eat") ;
use(Table,getChops(C1,C2),mySensor);
+chopsticks_requested(C1,C2);
sense(mySensor,8000).

+artifact_event(chops_acquired,mySensor,Table,EventTime) :
chopsticks_requested(C1,C2)

<- .print("Got chopsticks, can eat.");
-chopsticks_requested(C1,C2);
+got_chopsticks(C1,C2); -hungry;
use(Table,releaseChops(C1,C2),mySensor);
sense(mySensor).

+sensing_timeout(mySensor) : chopsticks_requested(C1,C2)
<- .print("Starved, good bye world.");

.myName(Me); .killAgent(Me).

+artifact_event(chops_released,mySensor,Table,_) :
got_chopsticks(C1,C2)

<- .print("Chopsticks released.");
-got_chopsticks(C1,C2);
+wants_to_live_for_another_round.

Fig. 5. Jason implementation of waiter agents (left) and dining philosopher agents
(right)

and the table—managing the set of chopsticks—as the coordination artifact that
agents share and use to perform their (eating) activities. It is easy to encapsulate
in the table artifact the enactment of the social policy that makes it possible to
satisfy both mutual exclusion for the access on the individual chopsticks, and
avoid deadlock situations. Fig. 5 shows the full executable implementation of
the Jason project (available at CARTAGO web site). It accounts for a MAS file
describing the multi-agent system initially composed by a waiter agent called
alfredo, five philo agents called rosa,beppo,pippo,maria,giulia, working inside
a common CARTAGO working environment. An artifact of type Table is dynam-
ically created and exploited by the agents.

A brief description of the components follows. The waiter agent is responsible
for creating a table identified by myTable with 5 chopsticks, and informing all the
other agents which chopsticks should they use. The usage interface of the table
artifact is composed by only two operations, getChops and releaseChops, which
can be used respectively to get two chopsticks from the table and to give them
back. The inner machinery of the table artifact ensures mutual exclusion on the
access on chopsticks (an artifact executes one operation at a time, analogously to
monitors) and deadlock avoidance (by releasing the chopsticks only if both are
available, enqueueing the pending requests). The source code of the philosopher

104 A. Ricci, M. Viroli, and A. Omicini

in is quite intuitive: after receiving the information about the chopsticks to use,
the philosopher starts a life-cycle interleaving thinking and eating. By thinking,
a philosopher gets hungry. The belief to be hungry triggers the plan to eat: first,
if it does not believe to own the chopsticks, then it suitably interacts with table
to get them, by triggering the getChops operation and start observing the table.
Note that the use action is not blocking: instead sense action can (optionally)
block the agent control flow for a certain amount of time, waiting to get some
stimuli on the specified sensor. If no perception is sensed in this amount of time,
an sensing timeout belief is generated, and the philosopher sadly decides to
die for starvation. When a philosopher perceives that the chopsticks have been
acquired, then it can eat. After completing the eating activity, being no longer
hungry, the philosopher releases the chopsticks by executing the releaseChops

operation and starts thinking again.

3.4 Some Remarks

Some considerations are worth remarking. First the example is not meant to be
as complex as real-world MAS working environments, and in particular it is not
robust to possible failures as it should be—in particular to agent failures in giv-
ing back the chopsticks. Despite its simplicity, the example is useful to give an
idea of the basic A&A philosophy in designing systems balancing the responsibil-
ities among agents and artifacts. Simple alternative solutions to this one would
account for having either an agent playing the role of the table, or avoiding a
table and let agents coordinate through suitable conversation protocols.

With respect to the former one, the A&A approach makes it possible to avoid
the need to design and implement parts of the system with “wrapper” agents
though they are clearly not autonomous neither proactive. We think that this
is very important both from a conceptual point of view—avoiding semantic gap
between analysis and then design and implementation—but also a pragmatical
point of view: it is intuitive that artifacts in general, despite specific cases, are en-
tities largely more lightweight than agents: on the one side, artifacts are typically
passive, with simple mechanisms to trigger and execute operations, and possibly
changing the observable state and generating events; on the other side, agents
typically encapsulate one or multiple control flows, and have complex machin-
ery for managing knowledge, selecting pro-actively actions to do, and so on. So,
adopting artifacts and not agents to represent automatised resources and tools
can be effective from the point of view of maintenaince and performance—in us-
ing time and memory resources— in particular to scale with system complexity
in terms of number of agents and artifacts involved.

With respect to the latter case, we think that the situation is pretty analogous
to human working environments: not always the language and direct communica-
tion is the best way to coordinate the independent activities of individual. There
are cases where well-designed coordination artifacts could be largely more effec-
tive, for instance enabling communication and coordination without requiring a
strong temporal and spatial coupling between agents. Conversely, we think that
the point is to find a way (models and theories) in MAS to use language—i.e.

The A&A Programming Model and Technology 105

direct communication—and artifacts in synergy, as happen in human contexts.
Indeed, we consider this as one of the crucial points that would be worth inves-
tigating in future research on artifacts in MAS.

4 Conclusions and Future Works

The fact that the environment can play an important role in designing and
programming MAS is now a well-known and accepted fact [16]: the point is now
which kind of reference model we should adopt and systematically use to conceive
and design a “good” environment for agent activities, so as to create cognitive
MAS that suitably exploit such an environment to perform their individual and
social activities. An important point here is abstraction: it is opinion of the
authors that reference models should aim not merely at identifying mechanisms
and/or architectures, but first of all at framing the issue of MAS environment in
terms of new abstractions introduced with respect to the basic agent and MAS
meta-model—and the related theoretical foundation.

By drawing inspiration from human cooperative working environments, in
this paper we propose a general conceptual framework called A&A, which makes
it possible to entail such design in terms of set of suitably designed artifacts,
populating workspaces and constituting in the overall the MAS working envi-
ronment. Then we discuss current technologies—among which the prominent
one is called CARTAGO—that make it possible to prototype MAS applications
exploiting artifact-based working environments. Finally, we consider the issue of
integration of such technologies with existing MAS cognitive environments, by
adopting as a reference case the Jason programming platform, towards scenarios
in which MAS composed by intelligent agents—possibly developed with differ-
ent agent programming languages or architectures—suitably share and exploit
artifact-based working environments to interact and cooperate.

Indeed, in this paper we introduced and described just the basic—and some-
what simplest—points concerning A&A and the notion of artifacts in MAS: sev-
eral other important points have not being considered either for lack of space
or because they are still part of the future work. Among the many others, two
main ones are worth to be pointed out here: artifact composition (linkability)
and intelligent use of artifacts. Concerning this second point in particular, the-
oretical work on models and theories for the cognitive use of artifacts is still
in its infancy. The objective here is to find on the one side suitable languages
and theoretical frameworks to formally describe—in particular— the function
of artifacts, their operating instructions and more generally artifact observable
state, so as to make them useful and effective in agent reasoning; on the other
side, revisiting agent reasoning model and techniques so as to exploit as much
as possible the availability of working environments suitably designed to help
their activities. Existing work on MAS in semantic web and the research work
investigating human and autonomous agents reasoning on (real-world) tools [2]
indeed could provide useful insights to face the problem.

106 A. Ricci, M. Viroli, and A. Omicini

References

1. Agre, P., Horswill, I.: Lifeworld analysis. Journal of Artificial Intelligence Reser-
ach 6, 111–145 (1997)

2. Amant, R.S., Wood, A.B.: Tool use for autonomous agents. In: Veloso, M.M.,
Kambhampati, S. (eds.) AAAI/IAAI 2005 Conference, Pittsburgh, PA, USA, July
9–13, 2005, pp. 184–189. AAAI Press / The MIT Press (2005)

3. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multi-agent systems. Informatica 30, 33–44 (2006)

4. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006)

5. Kirsh, D.: The intelligent use of space. Artif. Intell. 73(1-2), 31–68 (1995)
6. Kirsh, D.: Distributed cognition, coordination and environment design. In: Euro-

pean conference on Cognitive Science, pp. 1–11 (1999)
7. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer

Interaction. MIT Press, Cambridge (1996)
8. Norman, D.: Cognitive artifacts. In: Carroll, J. (ed.) Designing interaction: Psy-

chology at the human–computer interface, pp. 17–38. Cambridge University Press,
New York (1991)

9. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for
MAS. Electronic Notes in Theoretical Computer Sciences 150(3), 21–36 (May 29,
2006), In: Proceedings of 1st International Workshop Coordination and Organiza-
tion (CoOrg 2005), COORDINATION 2005, Namur, Belgium, (April 22, 2005)

10. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: AAMAS 2004,
vol. 1, pp. 286–293. ACM, New York (2004)

11. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with Artifacts. In: Bor-
dini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) PROMAS 2005. LNCS
(LNAI), vol. 3862, pp. 206–221. Springer, Heidelberg (2006)

12. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

13. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer Supported Cooperative Work 5(2/3),
155–200 (1996)

14. Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures
for the environment of multiagent systems. Autonomous Agents and Multi-Agent
Systems 14(1), 49–60 (2007)

15. Viroli, M., Omicini, A., Ricci, A.: Infrastructure for RBAC-MAS: An approach
based on Agent Coordination Contexts. Applied Artificial Intelligence 21(4–5),
443–467 (April 2007) Special Issue: State of Applications in AI Research from
AI*IA 2005

16. Weyns, D., Parunak, H.V.D. (eds.): Journal of Autonomous Agents and Multi-
Agent Systems. Special Issue: Environment for Multi-Agent Systems 14(1) (2007)

A Practical Agent Programming Language

Mehdi Dastani and John-Jules Ch. Meyer

Utrecht University
The Netherlands

�����������	
����
�

Abstract. This paper discusses the need for an e�ective and practical BDI-based
agent-oriented programming language with formal semantics. It proposes an al-
ternative by presenting the syntax and semantics of a programming language,
called 2APL (A Practical Agent Programming Language). This programming
language facilitates the implementation of multi-agent systems consisting of in-
dividual cognitive agents. 2APL distinguishes itself from other BDI-based agent-
oriented programming languages by having formal semantics while realising an
e�ective integration of declarative and imperative style programming. This is
done by introducing a set of practical programming constructs, including both
declarative goals and events (which are used interchangeably in other program-
ming languages), and specifying their operational semantics.

1 Introduction

Existing BDI-based agent-oriented programming languages such as Jason[2], Jack[8],
Jadex[7], and 3APL[3,5] provide programming constructs and mechanisms that allow
direct implementation of software agents in terms of BDI concepts. These programming
languages di�er from each other as they facilitate the implementation of di�erent but
overlapping sets of agent concepts. For example, they all share programming constructs
to support the implementation of an agent’s beliefs and plans. However, 3APL di�ers
from other programming languages as it supports the implementation of declarative
goals as well as plan revision mechanism, but lacks programming constructs to support
the implementation of events and event handling mechanism. Although, a comparison
between these BDI-based programming languages is outside the scope of this paper, we
would like to emphasize that some of the concepts that are shared by these languages
have di�erent semantics or even are not comparable at all. For example, the beliefs and
goals in 3APL (and the beliefs in Jason) are propositions having declarative semantics
while the beliefs in Jack and Jadex can be represented by conventional data structures
lacking a formal semantics. The situation gets even worse because di�erent languages
use di�erent concepts with the same name or they use the same concept with di�erent
names. For example, although both Jason and 3APL use the concept of goal, a goal in
Jason is an event that triggers a plan while a goal in 3APL is a proposition that can be
reasoned with [3,4]. The declarative nature of goals in 3APL allows the implementation
of generic planning rules that assign plans to subgoals, i.e., goals that are derivable from
the goal base.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 107–123, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

108 M. Dastani and J.-J.Ch. Meyer

Our experience with using these agent-oriented programming languages in various
academic courses and research projects have shown that some of the existing program-
ming constructs, tools, and mechanisms are indeed useful, expressive and e�ective in
programming software agents. It also made it clear that new programming constructs,
mechanisms and tools are needed to make the BDI-based programming languages more
expressive and practical. We have also learned that the use and a deep understanding
of these programming languages are significantly improved by the availability of their
formal semantics. In our opinion, a challenge of a practical BDI-based agent-oriented
programming language is 1) to realise an e�ective integration of declarative and imper-
ative style programming, and 2) to have formal semantics. The declarative style pro-
gramming should facilitate the implementation of the mental state of agents allowing
agents to reason about their mental states and update them accordingly. The impera-
tive style programming should facilitate the implementation of processes, the flow of
control, and mechanisms such as procedure call, recursion, and interface to existing
imperative programming languages.

In this paper, we present a BDI-based agent-oriented programming language called
2APL (A Practical Agent Programming Language). The main motivation to design and
develop 2APL is an e�ective integration of programming constructs that support the
implementation of declarative concepts such as belief and goals with imperative style
programming such as events and plans. Like most BDI-based programming languages,
di�erent types of actions such as belief and goal update actions, test actions, external
actions, and communication actions are distinguished. These actions are composed by
conditional choice operator, iteration operator, and sequence operator. The composed
actions constitute the plans of the agents. Like the existing agent programming lan-
guages, 2APL provides rules to indicate that a certain goal can be achieved by a certain
pre-compiled plan. Agents may select and apply such rules to generate plans to achieve
their goals.

As agents may operate in dynamic environments, they have to observe their envi-
ronmental changes. In 2APL environmental changes will be notified to the agents by
means of events. It should be noted that in some agent programming languages events
are used for various purposes. For example, a goal in Jason is an event, while in Jadex
events are generated to notify an agent’s internal changes as well. In our view, although
both goals and events cause an agent to execute actions, there are fundamental di�er-
ences between them. For example, an agent’s goal denotes a desirable state for which
the agent performs actions to achieve it, while an event carries information about (en-
vironmental) changes which may cause an agent to react and execute certain actions.
After the execution of actions, an agent’s goal may be dropped if the state denoted by it
is achieved, while an event can be dropped just before (or immediately after) executing
the actions that are triggered by it. Moreover, because of the declarative nature of goals,
an agent can reason about its goals while an event only carries information which is not
necessarily the subject of reasoning.

Some characterizing 2APL features are related to the constructs designed with re-
spect to an agent’s plans. The first construct is a part of an exception handling mech-
anism allowing a programmer to specify how an agent should repair its plans when
their executions fail. This construct has the form of a rule which indicates how a plan

A Practical Agent Programming Language 109

should be repaired. It is similar to the plan revision rules introduced in 3APL, but it
di�ers from it as 2APL rules can only be applied to repair failed plans. In contrast, the
plan revision rules of 3APL is applied to all plans continuously. In our view, it does not
make sense to modify a plan if the plan is correct and executable. The second 2APL
programming construct with respect to plans is related to the so-called atomic plans. In
most agent-oriented programming languages, an agent can have various plans whose
executions can be interleaved. The arbitrary interleaving of plans may be problematic
in some cases such that a programmer may want to indicate that a certain part of a plan
should be executed atomically at once without being interleaved with the actions of
other plans. Similar construct is also introduced in Jadex[7].

In the following sections, we first present the complete syntax of 2APL and discuss
the intuitive meaning of its ingredients. Then, because of space limitation, the formal
semantics of only some characterizing programming constructs of 2APL is presented.
We conclude the paper by discussing the implementation of 2APL interpreter and its
corresponding platform.

2 2APL: Syntax

This section presents the complete syntax of 2APL, which is specified using the EBNF
notation. In this specification, illustrated in Figure 1, we use �atom� to denote a Prolog
like atomic formula starting with lowercase letter, �Atom� to denote a Prolog like atomic
formula starting with a capital latter (parentheses are required for such formula with
zero argument), �ident� to denote a string and �Var� to denote a string starting with a
capital letter. We use �ground atom� to denote a ground atomic formula. An individual
2APL agent may be composed of various ingredients that specify di�erent aspects of
the agency. A 2APL agent can be programmed by implementing the initial state of
those ingredients. In the following, we discuss each ingredients and give examples to
illustrate them.

2.1 Beliefs and Goals

A 2APL agent may have beliefs and goals which change during the agent’s execution.
The beliefs of the agents are implemented by the belief base, which contains informa-
tion the agent believes about its surrounding world including other agents. The imple-
mentation of the initial belief base starts with the keyword ’��������’ followed by one
or more belief expressions of the form �belie f �.

��������

�	�
���
�

����	��
�
�

�����
���
�

�����
���
�

�����
��	���	���
 �� �	� �����
 �
�

Note that a �belie f � expression is a Prolog fact or rule such that the belief base of a
2APL agent becomes a Prolog program. All facts are assumed to be ground. The exam-
ple above illustrates the implementation of the initial belief base of a 2APL agent. This

110 M. Dastani and J.-J.Ch. Meyer

�2APL Prog� ::� (”Include:” �ident�
� ”BeliefUpdates:” �BelU pS pec�
� ”Beliefs:” �belie f �
� ”Goals:” �goals�
� ”Plans:” �plans�
� ”PG-rules:” �pgrules�
� ”PC-rules:” �pcrules�
� ”PR-rules:” �prrules�)*

�BelU pS pec� ::� (”�”�belquery� ”�” �belie f update� ”�”�literals�”�”)�
�belie f � ::� (�ground atom� ”.” � �atom� ”: �” �literals�”.”)�
�goals� ::� �goal� (”,” �goal�)*
�goal� ::� �ground atom� (”and” �ground atom�)*
�baction� ::� ”skip” � �belie f update� � �sendaction� � �externalaction�

� �abstractaction� � �test� � �adoptgoal� � �dropgoal�
�plans� ::� �plan� (”,” �plan�)*
�plan� ::� �baction� � �sequenceplan� � �i f plan� � �whileplan� � �atomicplan�
�belie f update� ::� �Atom�

�sendaction� ::� ”send(” �iv� ”,” �iv� ”,” �atom� ”)”
� ”send(” �iv� ”,” �iv� ”,” �iv� ”,” �iv� ”,” �atom� ”)”

�externalaction� ::� ”@” �iv�”(” �atom� ”,” �Var� ”)”
�abstractaction� ::� �atom�

�test� ::� ”B(” �belquery� ”)” � ”G(” �goalquery� ”)” � �test� ”&” �test�
�adoptgoal� ::� ”adopta(” �goalvar� ”)” � ”adoptz(” �goalvar� ”)”
�dropgoal� ::� ”dropGoal(” �goalvar� ”)” � ”dropSubgoal(” �goalvar� ”)”

� ”dropExactgoal(” �goalvar� ”)”
�sequenceplan� ::� �plan� ”;” �plan�
�i f plan� ::� ”if” �test� ”then” �scopeplan� (”else” �scopeplan�)?
�whileplan� ::� ”while” �test� ”do” �scopeplan�
�atomicplan� ::� ”[” �plan� ”]”
�scopeplan� ::� ”�” �plan� ”�”
�pgrules� ::� �pgrule��
�pgrule� ::� �goalquery�? ”� �” �belquery� ”�” �plan�
�pcrules� ::� �pcrule��
�pcrule� ::� �atom� ”� �” �belquery� ”�” �plan�
�prrules� ::� �prrule��
�prrule� ::� �planvar� ”� �” �belquery� ”�” �planvar�
�goalvar� ::� �atom�(”and”�atom�)*
�planvar� ::� �plan� � �Var� � ”if” �test� ”then” �scopeplanvar� (”else” �scopeplanvar�)?

� ”while” �test� ”do” �scopeplanvar� � �planvar� ”;” �planvar�
�scopeplanvar� ::� ”�” �planvar� ”�”
�literals� ::� �literal� (”,” �literal�)*
�literal� ::� �atom� � ”not” �atom�

�ground literal� ::� �ground atom� � ”not” �ground atom�

�belquery� ::� ”true” � �belquery� ”and” �belquery� � �belquery� ”or” �belquery�
� ”(” �belquery� ”)” � �literal�

�goalquery� ::� ”true” � �goalquery� ”and” �goalquery� � �goalquery� ”or” �goalquery�
� ”(” �goalquery� ”)” � �atom�

�iv� ::� �ident� � �Var�

Fig. 1. The EBNF syntax of 2APL

A Practical Agent Programming Language 111

belief base represents the information of an agent about its ��	��!	��� environment.
In particular, the agent believes that its position in this environment is
���
, it has
no gold item in possession, there are trash at positions
���
 and
���
, and that the
��	��!	��� environment is clean if there are no trash anymore.

The goals of a 2APL agent are implemented by its goal base, which is a list of
formulas each of which denotes a situation the agent wants to realize (not necessary all
at once). The implementation of the initial goal base starts with the keyword ’�	����’
followed by a list of goal expressions of the form �goal�. Each goal expression is a
conjunction of ground atoms. Note that a ground atom is treated as a Prolog fact. The
following example is the implementation of the initial goal base of a 2APL agent. This
goal base indicates that the agent wants to achieve a desirable situation in which it has
five gold items and the ��	��!	��� is clean. Note that this single conjunctive goal is
di�erent than having two separate goals ’����	��
�
’ and ’�����
��	��!	���
’.
In the latter case, the agent wants to achieve two desirable situations independently of
each other, i.e., one in which the agent has a clean ��	��!	���, not necessarily with a
gold item, and one in which it has five gold items and perhaps a ��	��!	��� which is
not clean. Note that di�erent goals in the goal base are separated by a comma.

�	����

����	��
�
 ��� �����
��	��!	���

The beliefs and goals of agents are related to each other. In fact, if an agent believes
a certain fact, then the agent does not pursue that fact as a goal. This means that if an
agent modifies its belief base, then its goal base may be modified as well.

2.2 Basic Actions

Basic actions specify the capabilities that an agent can perform to achieve its desirable
situation. The basic actions will constitute an agent’s plan, as we will see in the next
subsection. In 2APL, six types of basic actions are distinguished: actions to update
the belief base, communication actions, external actions to be performed in an agent’s
environment, abstract actions, actions to test the belief and goal bases, and actions to
manage the dynamics of goals.

Belief Update Action. A belief update action updates the belief base of an agent when
executed. A belief update action �belie f update� is an expression of the form �Atom�
(i.e., a first-order atom in which the predicate starts with a capital letter). Such an ac-
tion is specified in terms of pre- and post-conditions. An agent can execute a belief
update action if the pre-condition of the action is derivable from its belief base. The
pre-condition is a formula consisting of literals composed by disjunction and conjunc-
tion operators. The execution of a belief update action modifies the belief base in such a
way that after the execution the post-condition of the action is derivable from the belief
base. The post-condition of a belief update action is a list of literals. The update of the
belief base by such an action removes the atom of the negative literals from the belief
base and adds the positive literals to the belief base. The specification of the belief up-
date actions starts with the keyword ’������"�������’ followed by the specifications
of a set of belief update actions �BelU pS pec�.

112 M. Dastani and J.-J.Ch. Meyer

������"�������

#�	� ����$
%	��
& '���"�

 #����$
%	��
&

#�����
(�)
 ��� �	�
(�)
& *�+	,�-����

 #�	� �����
(�)
&

#����	��
(
& .���	��

 #�	� ����	��
(
�

�	� ����$
%	��
�

����	��
(/�
&

#�	�
(�)
& 0�%'	�
(��)�
 #�	� �	�
(�)
�

�	�
(��)�
&

Above is an example of the specification of the belief update actions. In this example,
the specification of the '���"�

 indicates that this belief update action can be per-
formed if the agent does not already carry gold items and that after performing this
action the agent will carry one gold item. The agent is assumed to be able to carry only
one gold item. Note that the agent cannot perform two '���"�

 action consecutively.
Note also the use of variables in the specification of 0�%'	�
(��)�
. It requires that
an agent can change its current position to
(��)�
 if its current position is
(�)
.
After the execution of this belief update action, the agent believes that its position is

(��)�
 and not
(�)
. Note also that variables in the post-conditions are bounded
since otherwise the facts in the belief base will not be ground.

Communication Action. A communication action passes a message to another agent. A
communication action �sendaction� can have either three or five parameters. In the first
case, the communication action is the expression ����
*����,��� '���	�+���,��

1��%2�%�� 3��	�	%$� 0	�����
 where *����,�� is a name referring to the receiv-
ing agent, '���	�+���,� is a speech act name (e.g. inform, request, etc.), 1��%2�%� is
the name of the language used to express the content of the message, 	��	�	%$ is the
name of the ontology used to give a meaning to the symbols in the content expression,
and 0	����� is an expression representing the content of the message. It is often the case
that agents assume a certain language and ontology such that it is not necessary to pass
them as parameters of their communication actions. The second version of the communi-
cation action is therefore the expression ����
*����,���'���	�+���,��0	�����
.
It should be noted that 2APL interpreter is built on the FIPA compliant JADE platform.
For this reason, the name of the receiving agent can be a local name or a full JADE name.
A full jade name has the form �	�����+�4�	����	��56.78where �	�����+� is the
name as used by 2APL, �	�� is the name of the host running the agent’s container and
�	�� is the port number where the agent’s container, should listen to (see [1] for more
information on JADE standards).

External Action. An external action is supposed to change the external environment
in which agents operate. The e�ects of external actions are assumed to be determined
by the environment and might not be known to the agents beforehand. An agent thus
decides to perform an external action and the external environment determines the e�ect
of the action. The agent can know the e�ects of an external action by performing a sense
action (also defined as an external action), by means of events generated by the envi-
ronment, or by means of a return parameter. An external action �externalaction� is an
expression of the form 48�,
.���	�9�+��*��2��
. The parameter 8�, is the name

A Practical Agent Programming Language 113

of the agent’s environment, implemented as a Java class. The parameter .���	�9�+�
is a method call (of the Java class) that specifies the e�ect of the external action in the
environment. The environment is assumed to have a state represented by the instance
variables of the class. The execution of an action in an environment is then a read�write
operation on the state of the environment. The parameter *��2�� is a list of values,
possibly an empty list, returned by the corresponding method. An example of the im-
plementation of an external action is 4��	��!	���
����

�1
 (go one step east in
the blockworld environment). The e�ect of this action is that the position of the agent
in the blockworld environment is shifted one slot to the right. The list 1 is expected as
the return value.

Abstract Action. The general idea of an abstract action is similar to a procedure call
in imperative programming languages. The procedures should be defined in 2APL by
means of the co-called PC-rules, which stands for procedure call rules (see subsection
2.4 for a description of PC-rules). As we will see in subsection 2.4, a PC-rule can be
used to associate a plan to an abstract action. The execution of an abstract action in a
plan removes the abstract action from the plan and replaces it with an instantiation of
the plan that is associated to the abstract action by a PC-rule. Like a procedure call in
imperative programming languages, an abstract action �abstractaction� is an expression
of the form �atom� (i.e. a first order expression in which the predicate starts with a
lowercase letter). An abstract action can be used to pass parameters from one plan to
another plan. In particular, the execution of an abstract action passes parameters from
the plan in which it occurs to another plan that is associated to it by a PC-rule.

Test Actions. A test action is to check whether the agent has certain beliefs and goals.
A test action is an expression of the form �test� consisting of belief and goal query
expressions. A belief query expression has the form �
�
, where � consists of liter-
als composed by conjunction and disjunction operators. A goal query expression has
the form �
�
, where � consists of atoms composed by conjunction and disjunction
operators.

A belief query expression, which constitutes a test action, is basically a (Prolog)
query to the belief base and generates a substitution for the variables that are used in the
belief query expression. A goal query expression, which also constitutes a test action,
is a query to an individual goal in the goal base, i.e., it is to check if there is a goal in
the goal base that satisfies the query. Such a query may also generate a substitution for
the involved variables.

A test action can be used in a plan to 1) instantiate variables in the subsequent ac-
tions of the plan (if the test succeeds), or 2) block the execution of the plan (if the test
fails). The instantiation of variables in a test action is determined through belief and goal
queries performed from left to the right. For example, let an agent believes �
�
 and
has the goal :
�
, then the test action �
�
(

 ; �
:
(

 fails, while the test action
�
�
(

 ; �
:
)
 	� �
(

 succeeds with �(5� �)5�� as the resulting substitution.

Goal Dynamics Actions. The adopt goal and drop goal actions are used to adopt
and drop a goal to and from an agent’s goal base, respectively. The adopt goal action
�adoptgoal� can have two di�erent forms: ��	���
�
 and ��	��<
�
. These two ac-
tions can be used to add the goal � (a conjunction of atoms) to the begin and to the end of

114 M. Dastani and J.-J.Ch. Meyer

an agent’s goal base, respectively. Note that the programmer has to ensure that the vari-
ables in � are instantiated before these actions are executed since the goal base should
contain only ground formula. Finally, the drop goal action �dropgoal� can have three
di�erent forms: ��	��	��
�
, ��	�=2��	��
�
, and ��	�8>����	��
�
. These
actions can be used to drop from an agent’s goal base, respectively, all goals that are a
logical subgoal of �, all goals that have � as a logical subgoal, and exactly the goal �,
respectively. Similar actions are proposed in [6].

2.3 Plans

In order to reach its goals, a 2APL agent adopts plans. A plan consists of basic actions
composed by some process composition operators. In particular, basic actions can be
composed by means of the sequence operator, conditional choice operators, conditional
iteration operator, and an unary operator to identify atomic plans.

The sequence operator ? is a binary operator that takes two plans and generates
one �sequenceplan� plan. The sequence operator indicates that the first plan should be
performed before the second plan. The conditional choice operator generates �i f plan�
plans of the form �� � ���� �1 ���� �2, where �1 and �1 are arbitrary plans. The
condition part of this expression (i.e., �) is a test that should be evaluated with respect
to an agent’s belief and goal bases. Such a plan can be interpreted as to perform the
if-part of the plan (i.e., �1) when the test � succeeds, otherwise perform the else-part
of the plan (i.e., �2). The conditional iteration operator generates �whileplan� plans of
the form !���� � �	 �, where � is an arbitrary plan. The condition � is also a test
that should be evaluated with respect to an agent’s belief and goal bases. The iteration
expression is then interpreted as to perform the plan � as long as the test � succeeds.

The last unary operator generates �atomicplan� plans, which are expressions of the
form @�A, where � is an arbitrary plan. This plan is interpreted as an atomic plan �,
which should be executed at once ensuring that the execution of � is not interleaved
with the actions of other plans. Note that an agent can have di�erent plans at the same
time and that plans cannot be composed by an explicit parallel operator. As there is no
explicit parallel composition operator, the nested application of the unary operator has
no e�ect, i.e., the executions of plans @�1; �2A and @�;@�2AA result identical behaviors.

The plans of a 2APL agent are implemented by its plan base. The implementation
of the initial plan base starts with the keyword ’'�����’ followed by a list of plans.
The following example illustrates the 2APL implementation of the initial plan base of
an agent. The first plan is an atomic plan ensuring that the agent updates its belief base
with its initial position
���
 immediately after performing the external action �����

in the ��	��!	��� environment. The second plan is a single action by which the agent
requests the administrator to register him.

'�����

@4��	��!	���
�����
�������
�1
?0�%'	�
���
A�

=���
��+�����:2������%�����
+�

2.4 Reasoning Rules

The 2APL programming language provides constructs to implement practical reasoning
rules that can be used to implement the generation of plans. In particular, three types

A Practical Agent Programming Language 115

of practical reasoning rules are proposed: planning goal rules, procedure call rules, and
plan repair rules. In the following subsections, we explain these three types of rules.

Planning Goal Rules (PG-rules). A planning goal rule can be used to implement an
agent that generates a plan if it has certain goals and beliefs. The specification of a plan-
ning goal rule �pgrule� consists of three entries: the head of the rule, the condition of
the rule, and the body of the rule. The head and the condition of a planning goal rule are
query expressions used to check if the agent has a certain goal and belief, respectively.
The body of the rule consists of a plan in which variables may occur. These variables
should be bound by the goal and belief expressions. A planning goal rule of an agent
can be applied when the goal and belief expressions (in the head and the condition of the
rule) are derivable from the agent’s goal and belief bases, respectively. The application
of a planning goal rule generates a substitution for variables that occur in the head and
condition of the rule as they are queried from the goal and belief bases. The resulted
substitution will be applied to the generated plan to instantiate it. A planning goal rule
is of the form: �goalquery�? ”� �” �belquery� ”�” �plan�.

Note that the head of the rule is optional which means that the agent can generate
a plan only based on its belief condition. The following is an example of a planning
goal rule indicating that a plan to go to a position
(��)�
, departing from a po-
sition
(��)�
, to remove trash can be generated if the agent has the goal �����

��	��!	���
 and it believes its current position is �	�
(��)�
 and there is trash at
position
(��)�
.

'���2����

�����
��	��!	���
 B� �	�
(��)�
 ��� �����
(��)�
 C

#%	-	
(��)��(��)�
?*�+	,�-����

&

The action %	-	
(��)��(��)�
 in the above PG-rule is an abstract action (see sub-
section 2.4 for how to execute an abstract action). Note that this rule can be applied
if (beside the satisfaction of the belief condition) the agent has a conjunctive goal
����	��
�
 ��� �����
��	��!	���
 since the head of the rule is derivable from
this goal.

Procedure Call Rules (PC-rules). The procedure call rules is introduced for various
reasons and purposes. Besides their use as procedure definition (used for executing ab-
stract actions), they can also be used to respond to messages and handle external events.
In fact, a procedure call rule can be used to generate plans as a response to the reception
of messages send by other agents, events generated by the external environment, and the
execution of abstract actions. Like planning goal rules, the specification of procedure
call rules consist of three entries. The only di�erence is that the head of the proce-
dure call rules is an atom �atom�, rather than a goal query expression �goalquery�. The
head of a PC-rule can be a message, an event, or an abstract action. A message and an
event are represented by atoms with the special predicates +����%��3 (+����%��5) and
�,����2, respectively. An abstract action is represented by any predicate name starting
with a lowercase letter. Note that like planning goal rules, a procedure call rule has a
belief condition indicating when a message (or event or abstract action) should generate
a plan. Thus, a procedure call rule can be applied if the agent has received a message

116 M. Dastani and J.-J.Ch. Meyer

(or an event or executes an abstract action) and the belief query of the rule is derivable
from its belief base. The resulted substitution for variables are applied in order to in-
stantiate the generated plan. A procedure call rule �pcrule� is of the form: �atom� ”� �”
�belquery� ”�” �plan�. The following are examples of procedure call rules.

'0��2����

+����%�
.����	�+�1��3��%	��.�
(��)�

 B� �	� ����$
%	��
 C

#@ �	�
(��)�
D? %	-	
(��)��(��)�
?

4��	��!	���
����2�

�
? '���"�

?

%	-	
(��)��E�E
?

4��	��!	���
��	�

�
? .���	��

A

&

�,���
%	��
(��)�
���	��!	���
 B� �	� ����$
%	��
 C

#@ �	�
(��)�
D?%	-	
(��)��(��)�
?

4��	��!	���
����2�

�
?'���"�

?

%	-	
(��)��E�E
?

4��	��!	���
��	�

�
?.���	��

A

&

%	-	
(��)��(��)�
 B� (� B (� C

#@ 4��	��!	���
����

�
?0�%'	�
(�/��)�
?

%	-	
(�/��)��(��)�
A

&

The first rule indicates that if an agent . informs that there is some gold at position

(��)�
 and the agent believes it does not carry any gold, then the agent has to go
from its current position to the gold position, pick up the gold, go to the depot position
(i.e. position
E�E
), and drop the gold in the depot. The '���"�

 and .���	��

are belief update actions to administrate the facts that the agent is carrying gold and
has certain amount of gold, respectively. The second rule indicates that if the environ-
ment ��	��!	��� notifies the agent that there is some gold at position
(��)�
 and
the agent believes it does not carry gold, then the abovementioned sequence of actions
should take place. The generation of plans without a belief condition enables a pro-
grammer to implement reactive agent behavior, i.e., plans are generated if the agent is
notified about an environmental change. Finally, the last rule indicates that the abstract
action %	-	 should be performed as a certain sequence of actions. Note that all plans
are implemented as atomic plans. The reason is that in these plans external actions and
belief update actions are executed consecutively such that an unfortunate interleaving
of actions can have undesirable e�ects. Note the use of recursion in this PC-rule.

Plan Repair Rules (PR-rules). Like other practical reasoning rules, a plan repair rule
consists of three entries: two abstract plan expressions and one belief query expression.
We have used the term abstract plan expression since such plan expressions include
variables that can be substituted with a plan. A plan repair rule indicates that if the
execution of an agent’s plan (i.e., any plan that can be unified with the abstract plan ex-
pression) fails and the agent has a certain belief, then the failed plan should be replaced

A Practical Agent Programming Language 117

by another plan. A plan repair rule �prrule� has the following form: �planvar� ”� �”
�belquery� ”�” �planvar�.

A plan repair rule of an agent can thus be applied if 1) the execution of one of its plan
fails, 2) the failed plan can be unified with the abstract plan expression in the head of
the rule, and 3) the belief query expression is derivable from the agent’s belief base. The
satisfaction of these three conditions results in a substitution for the variables that occur
in the abstract plan expression in the body of the rule. Note that some of these variables
will be substituted with a part of the failed plan through the match between the abstract
plan expression in the head of the rule and the failed plan. For example, if �� �1� �2 are
plans and X is a plan variable, then the abstract plan �1; X; �2 can be unified with the
failed plan �1; �; �2 resulting the substitution X � �. The resulted substitutions will be
applied to the second abstract plan expression to generate the new (repaired) plan.

The following is an example of a plan repair rule. This rule indicates that if the exe-
cution of a plan that starts with 4��	��!	���
����

�
?4��	��!	���
����

�

fails, then the plan should be replaced by a plan in which the agent first goes one step
to north, then makes two steps to east, and goes one step back to south. This repair can
be done without a specific belief condition.

'*��2����

4��	��!	���
����

�
?4��	��!	���
����

�
?(B� ��2� C

# 4��	��!	���
�	���

�
?4��	��!	���
����

�
?

4��	��!	���
����

�
?4��	��!	���
�	2��

�
?(&

Note the use of the variable (that indicates that any failed plan starting with external
actions 4��	��!	���
����

�
?4��	��!	���
����

�
 can be repaired by the
same plan in which the external actions are replaced by four external actions.

The question is when the execution of a plan fails. We consider the execution of a
plan as failed if the execution of its first action fails. When the execution of an action
fails depends on the type of action. The execution of a belief update action fails if the
pre-condition of the action is not derivable from the belief base or if the action is not
specified, an abstract action if there is no applicable procedure call rule, an external
action if the corresponding environment throws an ExternalActionFailedException or
if the agent has no access to that environment or if the action is not defined in that
environment, a test action if the test expression is not derivable from the belief and goal
bases, a goal adopt action if the goal is already derivable from the belief base, and an
atomic plan if one of its actions fails. The execution of all other actions are always
successful. When the execution of an action fails, then the execution of the whole plan
is stopped. The failed action will not be removed from the failed plan such that it can
be repaired.

2.5 External Environment

An agent can perform actions in di�erent external environments that are implemented
by a programmer as Java classes. Any Java class that implements the environment in-
terface can be used as a 2APL environment. The environment interface contains two
methods, addAgent(S tring name) and removeAgent(S tring name) to add�remove an
agent to�from the environment, respectively . The constructor of the environment must

118 M. Dastani and J.-J.Ch. Meyer

require exactly one parameter of the type ExternalEventListener. This object listens to
external events.

The execution of action 48�,
�
a1� � � � � an
�*
 calls a method with name � in en-
vironment 8�, with arguments a1� � � � � an. The first argument a1 is assumed to be the
identifier of the agent that executes the action. The environment needs to have this iden-
tifier, for example, to pass information back to the agent by means of events. The second
parameter * of an external action is meant to pass information back to the plan in which
the external action was executed. Note that the execution of a plan is blocked until the
method � is ready and the return value is accessible to the rest of the plan.

Methods may throw an exception (8>������.���	�F�����8>�����	�). If they
throw an exception, the corresponding external action is considered as failed. The fol-
lowing is an example of a method that can be called as external action.

�����	 ���� ���������
� ���
�� ����
� ����	���
�

�����
 �����
���	���
��������	�����

�! �����	���
��"���
�#
����#� ����$������%&

��
� �! �����	���
��"���
�#��
�#� ������
���%&

��
� �! �����	���
��"���
�#
����#� �����������%&

��
� �! �����	���
��"���
�#��
�#� ����'�
���%&

��
� �����

�� �����
���	���
��������	�����
�#(
)
��
 ����	���
#�%

�����
 ���*�
����
������%

&

2.6 Events and Exception

Information between agents and environments can be passed through events and ex-
ceptions. The main use of events is to pass information from environments to agents.
When implementing a 2APL environment in Java, the programmer should decide when
and which information from the environment should be passed to agents. This can be
done by calling the method �	���$8,���
.F �,���� =����%��� �%����
 in the
8>������8,���1�������, which is an argument of the environments constructor. The
first argument of this method may be any valid atomic formula. The rest of the argu-
ments may be filled with strings that represents local names of agents. The events can
be catched by agents whose name is included in the argument list to trigger one of their
procedure call rules. If the programmer does not specify any agents in the argument
list, all agents can catch the event. Such a mechanism of generating events by the en-
vironment and catching it by agents can be used to implement the agents’ perceptual
mechanism.

The exceptions in 2APL are used to apply plan repair rules. In fact, a plan repair rule
is triggered when a plan execution fails. Exceptions are used to notify that the execution
of a plan was not successful. The exception contains the identifier of the failed plan
such that it can be determined which plan needs to be repaired. 2APL does not provide
programming constructs to implement the generation and throwing of exceptions. In
fact, exceptions are semantical entities that cannot be used by 2APL programmers.

A Practical Agent Programming Language 119

3 2APL: Semantics

In the previous section, we described 2APL programming constructs and their intuitive
meanings. In this section, we present the formal semantics of 2APL in terms of a tran-
sition system. A transition system is a set of derivation rules for deriving transitions. A
transition is a transformation of one configuration into another and it corresponds to a
single computation step. Because of the space limitation, we only present the config-
uration of 2APL agents, external actions, and characterizing 2APL constructs such as
goal related constructs, atomic plan construct, and plan repair rules.

The configuration of an individual agent consists of its identifier, beliefs, goals, plans,
specifications of belief update actions, reasoning rules, the substitutions resulted from
queries to the belief and goal bases, and the received events. Since reasoning rules and
the specification of belief update actions do not change during an agent’s execution, we
will not include them in the agent’s configuration to keep the presentation as simple
as possible. It should be noted that additional information is assigned to an agent’s
plan. In particular, an identifier is assigned to each plan which can be used to notify
that the execution of the plan is failed. This is needed to identify and repair the plans
the execution of which have failed. Moreover, the instantiation of the PG-rule through
which a plan is generated is assigned to the plan. This information is used to avoid
selecting a PG-rule to generate a plan if there is still a plan in the plan base that is
generated by the same PG-rule and for the same goal.

Definition 1. The configuration of a 2APL agent is defied as A� � ��� �� �� 	�
� �� where
� is a string representing the agent’s identifier, � is a set of belief expressions �belie f �
representing the agent’s belief base, � is a list of goal expressions �goal� representing
the agent’s goal base, 	 is a set of plan entries consisting of �plan�, enriched with
additional information, representing the agent’s plan base,
 is a ground substitution
that binds domain variables to ground terms, and � is the agent’s event base. Each plan
entry is a tuple (�� r� p) where � is the executing plan, r is the instantiation of the PG-
rule through which � is generated, and p is the plan identifier. The agent’s event base �
is a tuple �E� I� M� where

– E is a set of events received from external environments. An event has the form
event(A� S), where A is a ground atom passed by the environment S .

– I is a set of identifiers denoting failed plans. An identifier represents an exceptions
thrown because of a plan execution failure.

– M is the set of messages sent to the agent. Each message is of the form
message(s� p� l� o� �), where s is the sender identifier, p is a performative, l is the
communication language, o is the communication ontology, and � is a ground atom
representing the message content.

In the rest of this paper, we use �� as a first-order entailment relation (we use Prolog
engine for the implementation of this relation).

The configuration of a multi-agents system is defined in terms of the configuration
of individual agents in the multi-agent system and their shared external environments.

Definition 2. Let Ai be the configuration of agent i and let � be a set of external shared
environments each of which is a set of atoms �atom�. The configuration of a 2APL multi-
agents system is defined as �A1� � � � � An� ��.

120 M. Dastani and J.-J.Ch. Meyer

The idea of a test action is to check if the belief and goal queries within a �test� expres-
sion are entailed by the agent’s belief and goal bases. Moreover, as some of the variables
that occur in the belief and goal queries may already be bound by the substitution
, we
apply the substitution to the �test� expression before testing it against the belief and
goal bases. After applying
, the test expression can still contain unbound variables to
bind next occurrences of the variable in the plan in which it occurs. Therefore, the test
action results a substitution
 which will be added to
.

Definition 3. Let � and �� be �test� expressions, � be a �belquery� expression, � be a
�goalquery� expression, and ��t be the entailment relation that evaluates test expressions
with respect to an agent’s belief and goal bases (�� �).

– (�� �) ��t B(�)
 � � �� �

– (�� �) ��t G(�)
 � ��i 	 � : �i �� �

– (�� �) ��t (� & ��)
1
2 � (�� �) ��t �
1 and (�� �) ��t �
�
1
2

A test action � can be executed successfully if � is entailed by the agent’s belief and
goal bases and the goal associated to this action is entailed by the agent’s goal base.

(�� �) ��t �

��� �� �� �(�� r�)��
� � �
 ��� �� �� ���
 � �
�� �

A test action can fail if one or more of its involved query expressions are not entailed
by the belief or goal bases. In such a case, the test action remains in the agent’s plan
base and an exception is generated to indicate the failure of this action.

��
 : (�� �) ��t �

��� �� �� �(�� r� id)��
� �E� I� M�� �
 ��� �� �� �(�� r� id)��
� �E� I � �id�� M��

The execution of an external action @Env(�(ti� � � � � tn)�V) has two di�erent e�ects.
The shared environments is changed and the variable V might be assigned to a term.
To define the e�ect of an external action on the agent’s state we define a function that
returns a tuple containing the new state of the environments and the assignment for V .
Let FEnv

�
(t1� � � � � tn� �) be the function that executes external action � with arguments

t1� � � � � tn in the environment Env 	 � and returns a tuple (
� ��), where
 contains one
substitution for the output variable V and �� is the updated set of environments (a change
in Env may change other environments in �). A successful execution of an external
action updates the agent’s substitution
 and the set of shared environments �. Note that
because the environment is shared among agents, the transition for an external action
of an individual agent is defined at the multi-agent level.

FEnv
�

(t1
� � � � � tn
� �) � (t� ��) & t �

�A1� � � � � Ai� � � � � An� �� �
 �A1� � � � � A�
i � � � � � An� ���

where
Ai � �i� �i� �i� �(@8�,(�(��� � � � � ��)� G)� �� ��)��
� �� &
A�

i � �i� �i� �i� ���
 � �[G�t]�� ��
However, if the execution of an external action fails, then the environment 8�, gen-

erates an exception such that FEnv
�

returns (
� ��). The failed action remains then in

A Practical Agent Programming Language 121

the plan base, the environments � may be updated, and the event base � is updated to
capture the failure exception.

FEnv
�

(t1
� � � � � tn
� �) � (
� ��)

�A1� � � � � Ai� � � � � An� �� �
 �A1� � � � � A�
i � � � � � An� ���

where
Ai � �i� �i� �i� �(@�
�(�(��� � � � � ��)� +)� �� ��)�� �� �E� I� M�� &
A�

i � �i� �i� �i� �(@�
�(�(��� � � � � ��)� +)� �� ��)�� �� �E� I � �id�� M�

In order to achieve an agent’s goal, plans should be generated and executed. The
generation of plans is through application of planning goals rules. Applying PG-rules
update only the plan base. Let r � � � � � � be a PG-rule of the agent, P be the set
of all possible plans, I be the set of all plan identifiers, � � [�1� � � � � �i� � � � � �n] be the
agent’s goal base, and �� � �� � �� be a variant of r, i.e., all variables occurring in r are
assumed to be fresh variables.

�i �� ��
1 & � �� ��
1
2 & ���� 	 P : (��� (��
1 � � � �)�) 	 	

��� �� �� 	�
� �� �
 ��� �� �� 	 � �(��
1
2 � ��
1 � � � � � id)��
� ��

where id is a fresh plan identifier. Note that it is checked that there is not already a plan
in 	 which is generated by the same planning rule for the same goal. Note also that �
can be ��2�. In such a case, the applied PG-rule can be re-applied if the plan generated
by it is completely executed and removed from the plan base.

Goals can be adopted and dropped from the goal base by means of specific adopt and
drop goal actions. There are two actions to add goal % to the goal base: ��	���
%
 and
��	��<
%
.

� ��� %
 & %�	2��(%
)
��� �� �� �(��	��((%)� r� id)��
� �� �
 ��� �� ��� ���
� ��

where %�	2��(%
) means that %
 is a ground formula, �� � %
 � � if ��	��(is ��	���
(i.e., the goal %
 is added to the begin of the list � of goals) and �� � � � %
 if ��	��(is
��	��< (i.e., the goal g
 is added to the end of �).

The ��	��	��
%
 action drops all goals that are logical subgoals of % from the goal
base.

�� � � � � f � %
 �� f �
��� �� �� �(��	��	��(%)� r� id)��
� �� �
 ��� �� ��� ���
� ��

The transitions for ��	�=2��	��
%
 and ��	�8>����	��
%
 are similar except that
�� � � � � f � f �� %
� and �� � � � � f � f � %
�, respectively. See section 2.2 for their
intuitive meanings.

The execution of an atomic plan is the non-interleaved execution of the maximum
number of actions of the plan. Let [�1; � � � ;�n] be an atomic plan. We need to de-
fine a transition rule that allows the derivation of a transition from a configuration
A1 � ��� �1� �1� �([�1; � � � ;�n]� r� id)��
1� �1� to a configurationAm � ��� �m� �m� 	�
m� �m�

such that either 	 � �([�k; � � � ;�n]� r� id)� and �k is the first action whose execution
fails, or all actions of the atomic plan are successfully executed, i.e., 	 � ��. Let
Ai � ��� �i� �i� �[(�� r� id)]��
i� �i� and Ai�1 � ��� �i�1� �i�1� �[(��� r� id)]��
i�1� �i�1�. In
order to specify the transition rule for atomic plans, we define transition(Ai� Ai�1) to

122 M. Dastani and J.-J.Ch. Meyer

indicate that the following one-step transition is derivable (the execution of one step of
plan � results plan ��)1:

Ai � ��� �i� �i� �(�; �� r� id)��
i� �i� �
 ��� �i�1� �i�1� �(��� r� id)��
i�1� �i�1� � Ai�1

The following transition rule specifies the execution of atomic plan [�1; � � � ;�n].

(�i : 1 � i � m
 transition(Ai� Ai�1)) & �A : �transition(Am�1� A)
��� �1� �1� �([�1; � � � ;�n]� r� id)��
1� �1� �
 ��� �m�1� �m�1� 	�
m�1� �m�1�

where A1 � ��� �1� �1� �([�1; � � � ;�n]� r� id)��
1� �1� and Am�1 � ��� �m�1� �m�1� 	�
m�1�

�m�1�. Note that the condition �A : �transition(Am�1� A) can hold for two reasons:
either there is no action to execute or the execution of one of the involved action has
failed. In the first case the resulting plan base 	 contains an empty plan ([�]� r� id) and
in the second case a non-empty plan ([�m�1]� r� id).

Finally, the execution of the application of a plan repair rule is based on the re-
ceived exceptions that identify failed plans. Let � � �E� I� M� be the event base of a
2APL agent and �1 � � � �2 be a variant of a PR-rule. Suppose the execution of a
plan (�� r� id) 	 	 fails such that id 	 I. Then, the plan repair rule can be applied if
the failed plan � matches the abstract plan expression �1 in the head of the rule, and
moreover, its belief condition is derivable from the belief base. The result is a substi-
tution that will be applied to the abstract plan expression in the body of the rule to
generate a new plan and to add it to the plan base. We assume a unification operator
U(�� �1) that implements a prefix matching strategy for matching plan � with abstract
plan expression �1. Roughly speaking, a prefix matching strategy means that the ab-
stract plan expression is matched with the prefix of the failed plan. The unification
operator returns a tuple (
T �
P� �

�) where
T is a term substitution,
P is a plan sub-
stitution and �� is the postfix of � that did not play a role in the match with �1 (e.g.,
U(�(a);�(b);�(c) � X;�(Y)) � ([Y�b]� [X��(a)]� �(c))). Note the all substitutions are
applied to the abstract plan expression from the body of the rule to generate a new plan.

U(�� �1) � (
T �
P� �
�) & � �� �
T
2 & id 	 I

��� �� �� �(�� r� id)��
� �E� I� M�� �
 ��� �� �� �(�2
T
2
P; ��� r� id)��
� �E� I � �id�� M��

If no plan repair rule can be applied to the failed plan, then the exception is deleted from
the event base and the failed plan remains in the plan base.

�(�1 � � � �2) 	 PR : (U(�� �1) �
 or � ��� �) & id 	 I & (�� r� id) 	 	

��� �� �� 	�
� �E� I� M�� �
 ��� �� �� 	�
� �E� I � �id�� M��

4 Conclusion and Future Works

In this paper, we presented a BDI-based agent-oriented programming language that
provides practical constructs for the implementation of cognitive agents. The complete
syntax and the intuitive interpretation of the involved programming constructs are dis-
cussed. Unfortunately, because of the space limitation we could only present the transi-
tion semantics of some characterising programming constructs.

1 Note that the execution of an abstract action in a plan can extend the plan.

A Practical Agent Programming Language 123

We have implemented this semantics in the form of an interpreter that can execute
2APL programs (i.e., initial configuration of 2APL agents). The execution of agents is
based on a deliberation cycle. Each cycle determines which transition in which order
should take place. The 2APL interpreter starts with applying planning goal rules to
generate plans for the agent’s goals, selects and executes plans, checks for exceptions
and repairs failed plans by applying plan repair rules, and finally checks for received
messages and events to apply the procedural call rules. This interpreter is integrated in
a 2APL platform that allows an agent programmer to load, edit, run, and debug a set of
2APL agents. This platform is built on top of the JADE platform in order to exploit all
tools and facilities that are developed for the JADE platform. These include tools such as
the Sni�er, Introspector, and RMA (Remote Agent management). We use also the JADE
communication layer to implement the communication between agents. Note that the
JADE platform aims to be complaint with the FIPA standards. Since the communication
between 2APL agents are through the JADE platform, the 2APL interpreter inherits the
objective of the JADE platform of being FIPA complaint.

We are working on various extensions of both 2APL language (e.g., adding constructs
to implement organisations and coordination artifacts at the multi-agent level) as well as
tools to be integrated in the 2APL platform (e.g., visual programming and debugging fa-
cilities). The current implementation of the 2APL platform together with some examples
and documentation can be downloaded from the following 2APL web site.

���� : ��!!!����22���������

References

1. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a java agent development frame-
work. In: Multi-Agent Programming: Languages, Platforms and Applications, Kluwer, Dor-
drecht (2005)

2. Bordini, R., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented program-
ming. In: Multi-Agent Programming: Languages, Platforms and Applications, Kluwer, Dor-
drecht (2005)

3. Dastani, M., van Riemsdijk, M., Meyer, J.-J.C.: Programming multi-agent systems in 3apl.
In: Multi-Agent Programming: Languages, Platforms and Applications, Kluwer, Dordrecht
(2005)

4. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Goal types in agent programming. In: Pro-
ceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006) (2006)

5. Hindriks, K.V., Boer, F.S.D., Hoek, W.V.D., Meyer, J.-J.C.: Agent programming in 3apl. In:
Autonomous Agents and Multi-Agent Systems, vol. 2(4), pp. 357–401 (1999)

6. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Programming with
Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

7. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Multi-Agent
Programming: Languages, Platforms and Applications, Kluwer, Dordrecht (2005)

8. Winiko�, M.: JACKT M intelligent agents: An industrial strength platform. In: Multi-Agent
Programming: Languages, Platforms and Applications, Kluwer, Dordrecht (2005)

A Common Semantic Basis for BDI Languages�

Louise A. Dennis1, Berndt Farwer2, Rafael H. Bordini2,
Michael Fisher1, and Michael Wooldridge1

1 Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, University of Durham, UK

lad@csc.liv.ac.uk

Abstract. We describe the design of an intermediate language (AIL) for BDI-
style programming languages. AIL is not intended as yet another programming
language, but is meant to provide a common semantic basis for a number of
BDI programming languages in order to support both formal verification and the
transfer of concepts and developments. We examine some of the key features of
AIL, unifying a wide variety of structures appearing in the operational semantics
of BDI programming languages. In particular, we highlight issues in the treatment
of events, goals, and intentions, which are central to the design of these languages.

1 Introduction

As the concept of an “agent” becomes more popular, so the variety of programming
languages based upon this concept increases. These agent-oriented programming lan-
guages range from minimal extensions of JAVA through to logic-based languages for
“intelligent” agents [1,15]. In our work, we are particularly concerned (at least initially)
with approaches based on rational agent theories [28], primarily the BDI theory devel-
oped by Rao and Georgeff [23]. Such languages not only incorporate the autonomous
behaviour required for the agent concept, but also provide sophisticated mechanisms
for instigating, controlling, and reasoning about such behaviours.

Although programming languages based on the BDI approach (let us call these BDI
languages) are increasingly popular, there are several problems, for example:

1. there are too many languages – consider all the varieties described in [1];
2. many of the languages are similar, yet subtly different – this makes it difficult for

developers to learn more than one language, as they are not based on agreed no-
tions/definitions; further, such differences make it difficult to identify precisely the
general mechanisms and to transfer new techniques between languages; and

3. despite the fact that many BDI languages have logical semantics and utilise logical
mechanisms, formal verification tools are rare.

This last aspect is particularly important, since BDI approaches are increasingly used
in complex, critical applications such as space exploration [20,5,24].

In our work1 we aim to design an intermediate language (called AIL– Agent Infras-
tructure Layer) for BDI-style programming languages. There are several motivations
for this, including:
� Work supported by EPSRC grants EP/D054788 (Durham) and EP/D052548 (Liverpool).
1 See http://www.csc.liv.ac.uk/∼michael/mcapl06 for details.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 124–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.csc.liv.ac.uk/~michael/mcapl06

A Common Semantic Basis for BDI Languages 125

– providing a common semantic basis for a number of BDI languages, thus clarifying
issues and aiding further programming language development;

– supporting formal verification by developing a model-checker optimised for check-
ing AIL programs – existing BDI languages can have language-specific compilers
for AIL so as to take advantage of its associated model-checker; and

– providing, potentially, a high-level virtual machine for efficient and portable imple-
mentation.

Rather than attempting to cover all BDI languages from the start, we have initially
tackled some of the most popular. Thus, we have principally referred to the variant of
AgentSpeak [22] used in Jason [3] and 3APL [18,8] when designing the semantics for
the AIL, but have also taken Jadex [21] and (Concurrent) METATEM [14] into account.
However, we expect that a significant proportion of the existing programming languages
for multi-agent systems will have mappings into AIL in the future.

The current design for AIL, in the form of an extensive operational semantics, can be
found in [10]. For the sake of space, in this paper we only discuss the main aspects of
AIL and introduce only the most important rules of the operational semantics. In order
to model a particular language in AIL, it will be necessary to create a custom AIL com-
piler for that language. It may also be necessary to provide some custom JAVA classes
for the language although these will, in general, be specific to a particular interpreter
for the language rather than the language itself. We intend to provide such classes and
compilers for AgentSpeak and 3APL, though this work remains to be done. The cor-
rectness of these compilers will then also need to be addressed. One of the reasons why
AIL is to be implemented as a JAVA library is that we aim to use JPF2 [26] as a target
model checker for programs written in various BDI languages.

Sometimes it will prove possible to map only fragments of a given language into
AIL. Our expectation is that large and useful fragments of most BDI-style agent pro-
gramming languages will be translatable. In order to accommodate the main features of
the main BDI languages, AIL has some components with overlapping functionality.

The structure of the remainder of this paper is as follows. In Section 2, we will
describe the key similarities in the programming languages considered, which will in
turn provide the basis for AIL. Section 3 then describes the core features and operational
semantics of AIL. Within AIL, certain language design decisions were required; those
related to plan revision in particular are highlighted in Section 4. Finally, in Section 5,
we provide concluding remarks, outline future work, and point to aspects of AIL not
covered in this paper.

2 General Similarities

There are some general concepts that are found in many BDI languages. We will review
these similarities and discuss the design implications for AIL.

Formula Representation. 3APL, AgentSpeak, and METATEM all use minor variations
on first order literals for the representation of beliefs, goals, actions, etc. Jadex uses
an internal JAVA representation but fragments of this can be mapped into first order
logic [4]. Therefore we have chosen first order literals as the basic representation.

2 http://javapathfinder.sf.net

http://javapathfinder.sf.net

126 L.A. Dennis et al.

Beliefs. All these languages have the concept of a belief base, generally considered as a
set of (belief) formulæ. A formula is considered to be believed if it is (unifiable with) a
formula in this set. In some languages there is extra reasoning machinery on top of this.
In both AgentSpeak and 3APL this additional machinery is a Prolog-style reasoning
engine which we have therefore adopted for AIL.

Goals. All the BDI languages have the concept of goals – states of the world the agent
is trying to bring about. The precise internal representation of goals differs but all the
languages we have considered maintain sets of outstanding goals. In general, the lan-
guages (with the exception of METATEM) also maintain a stack (or set of stacks) of
deeds3 to be performed in order to achieve these goals – these deeds may include com-
mitting to the achievement of further sub-goals. Informally, an agent’s reasoning cycle
involves either adding new deeds to this stack (triggered by the creation of a sub-goal)
or removing deeds from the stack (as actions are performed and goals achieved).

In [9], goals are categorised into four types: achieve, perform, maintain and query.
When an achieve goal appears in a deed stack it must be believed before it can be
removed. This contrasts with a perform goal which is removed as soon as new deeds
are added to the stack as a result of generating an intention from a suitable plan. Query
goals are used to query the belief base, usually in order to obtain instantiations for
variables. Maintain goals only trigger plan execution if they cease to be believed.

Terminology and semantics in this area is quite subtle, sometimes also referring to
events (AgentSpeak, 2APL [6]). In AgentSpeak, events refer both to commitment to
achieving goals and changes perceived in the environment. There are also many ways
of managing the relationship between (outstanding) goals, sub-goals, and the deeds
associated with achieving them. Outstanding goals are those to which the agent has
committed but not yet achieved. This places a design burden on AIL, as it must:

– allow outstanding goals to be identified;
– link a given outstanding goal with the sequence of deeds currently being pursued

in order to achieve it;
– maintain sequences of deeds to be performed (including committing to new goals).

Actions. Actions are performed by an agent in the “outside world”, i.e., the environ-
ment where the agent is situated. The only effect an action has on the working of AIL
is that it may return a unifier for some variables (as this is allowed in some of the lan-
guages, but not all) and, of course, it may be deemed to have succeeded or failed. In
some languages, actions have specific effects on the belief base (e.g., 3APL capabili-
ties4); such actions can be modelled as plans (see next point).

Plans. The word ‘plan’ is overloaded among BDI languages and can be used to repre-
sent either something that a programmer writes to describe how particular goals should
be tackled, or an agent’s internal deed stack of pending actions. We have chosen to use
plans for the first of these, and deed stack for the second.

3 The term “deed” has not been used in the agent programming language literature, to our knowl-
edge, but we have adopted it as a way to refer to the various types of formula one can typically
have in the body of plans.

4 A 3APL capability is an “internal” action which alters an agent’s beliefs about the world.

A Common Semantic Basis for BDI Languages 127

BDI languages have plans which are triggered according to aspects of the agent’s
state, typically the existence of an outstanding goal. Such plans are of the form

(trigger,guard,body)

where the guard is some set of literals that should be believed for the plan to be deemed
applicable. If a plan is selected, the plan body is placed on the relevant deed stack.

Jason also allows plans (and therefore deed stacks) to include belief update infor-
mation and so this is also permitted in AIL. This allows us to model actions with side
effects (and specifically 3APL capabilities) within our definition of plans.

It should be noted that we do not intend humans to write native AIL code, so we are
able to ignore features which help a programmer conceptually differentiate between
aspects of the language, as is the case with 3APL plans and capabilities.

As well as having plans triggered by outstanding goals, AgentSpeak allows plans
to be triggered by changes in the belief base. 3APL allows plan revision rules/plans
which match the prefix of the deed stack and replace it with some alternative. Jadex and
METATEM have constraint rules/plans which are triggered by some specific configura-
tion of the belief base alone. In order to represent these different types of plans within
AIL, we need to make a number of generalisations. We assume a set of intentions,
each composed, among other things, of a stack of events (such as outstanding goals and
sub-goals or information about belief updates) and a stack of deeds. The structure of in-
tentions will be further explained in Section 3.1 and later exemplified in Section 3.4. In
this set, what some languages (such as AgentSpeak) call an “event” can be represented
as an AIL intention with an empty deed stack. We assume that a current intention, thus
also a current event and a current deed stack, has been selected from this set.

Each plan in the agent’s plan library is represented by a tuple consisting of a trigger
event, a deed stack (called the prefix), a stack of belief expressions (called the guard
stack), and a (second) deed stack (called the body). The trigger must match the current
event, and the prefix must match the prefix of the current deed stack for the plan to
be deemed relevant. The belief expression at the top of the guard stack must also be
believed by the agent. When this happens, the prefix is dropped from the current deed
stack and replaced with the body. Each new deed is paired with the corresponding guard
(i.e., belief expression) from the guard stack. Through the use variables in triggers and
empty prefixes, this structure allows us to model many different types of plan.

We use a guard stack in order to model the different semantics for guards. Some
languages (e.g., Jadex) have invariant expressions that must be checked at every stage
during the execution of a deed stack, while others (e.g., AgentSpeak and 3APL) check
guards only when a plan is to be adopted. When a plan does have an invariant expres-
sion, that expression is paired with every deed on the stack. For normal plans (i.e., those
with only a guard and no invariants), only the first deed is paired with the guard expres-
sion; the remaining deeds are simply paired with � (‘true’, denoting an empty guard).
Once again, since humans are not expected to write native AIL plans, the tedium of
repeating the guard multiple times in order to represent a Jadex invariant is not an issue.

Applicable Plans. Most of the BDI languages employ the concept of determining
an applicable plan for achieving an outstanding goal. This is based on matching the
plan’s trigger, or prefix (to determine relevant plans) and then checking the guard (to
determine applicable plans). These BDI languages rely on user-defined methods used

128 L.A. Dennis et al.

�������	C select plan p′

��
�������	B

applicable plans
i + P��

�������	D

handle top of plan
plan(i) = p′@plan(i)

��
�������	A

select intention
i ��

�������	E

perception

I (new intention set)

Inbox, I (extended intention set)

���������	F
handle messages

I (extended intention set)
��

Fig. 1. AIL’s reasoning cycle

by the interpreter to select one of the appropriate applicable plans, which then is used to
generate a new deed stack. However, METATEM generates all possible next states (deed
stacks). In particular, it instantiates all the relevant plans, in some cases generating
several potential new deed stacks for a single plan, and then chooses between these
based, among other things, on how many outstanding goals are achieved by each option.
We adopt this as a more general solution.

3 Agent Infrastructure Layer

AIL’s reasoning cycle may informally be viewed as shown in Figure 1.
In this cycle, starting at stage A, an intention – which includes a deed stack – is

selected, leading to stage B. Using the agent’s plan library and belief base, a set of
applicable plans (P in Figure 1) is generated (stage C). From this, a single applicable
plan is selected and its deed stack joined to the current deed stack (D). The top deed in
this stack is then handled in the appropriate way (depending on the type of formula) and
the set of intentions updated accordingly (E). Next, perception takes place, posting new
events (i.e., belief updates), leading to stage F. At this final stage, agent communication
messages are handled and the reasoning cycles restarts.

When events are generated from perception of the environment (from E to F), they
are treated as intentions with empty plans. Agents have a message “inbox” where mes-
sages are placed. Any messages received during the last cycle are handled just before
another reasoning cycle starts; this may also extend the intention set.

Since AIL is designed as a basis for efficient verification and not as a programming
language to be used in developing agent-based systems, some parts of AIL programs
are essentially syntax-less (e.g., plans are represented directly as data structures in AIL).
We summarise AIL in the following sections.

3.1 Intentions: Events, Goals, and Deed Stacks

The concept of an intention is common in BDI languages and is used to represent the
intended means for achieving goals – intentions include what we call a deed stack, but

A Common Semantic Basis for BDI Languages 129

may also maintain information about the (sub-)goal they are intended to achieve or the
event that triggered them.

In AIL, we treat intentions as a complex abstract data structure. This data structure
aggregates the information about events, outstanding goals, and deed stacks used by
the various BDI languages we have considered. As suggested above, we use the idea of
events to represent outstanding goals (as, e.g., in AgentSpeak).

AIL intentions may most simply be viewed as a matrix structure consisting of four
columns in which we record events, guards, deeds, and unifiers (respectively). These
columns form an event stack, a guard stack, a deed stack, and a unifier stack. There are
as many rows in the matrix as there are deeds (in the bodies of the plan instances that
have become intentions) and events that have not been dealt with yet. Individual rows
in the intention associate a particular deed with the event that has caused the deed to
be placed on the intention, a guard, and a unifier; new events are associated with an
empty deed. An example of the use of this data structure can be found in Section 3.4.
The actual implementation of intentions is likely to be more compact than this – for
instance the commitment to achieving a goal (i.e., an event) will generally cause a stack
of deeds (the plan body) to be joined to the intention’s deed stack, all of which will get
associated with the same event; that is, each new deed generates a new row in the matrix
and the event is repeated in all those rows some of this repetition can almost certainly be
avoided. Information about outstanding goals can be extracted from the event stacks of
all intentions, which record the agent’s existing goals and the sequence of unachieved
sub-goals generated in pursuit of these.

3.2 Interpreter Specifics

We already noted that many interpreters for BDI languages delegate plan selection to
user-defined methods. Jason also defers intention selection to such methods. We have
chosen to provide simple defaults for such functions (in each case the default selects the
top of the stack) but allow them to be overridden. In some cases, such as METATEM,
which has specific phases in which only certain plans are applicable, it will be necessary
to override these defaults when theoretically modelling the language.

3.3 Operational Semantics

In this section we present a simplified outline of the operational semantics for AIL. The
full semantics is available as a technical report (see [10]); we here focus on key issues
and semantic rules.

We view an agent as a tuple consisting of an identifier ag , intentions (including a
current intention), applicable plans, a belief base, plan library, and a tag indicating the
current stage of the agent’s reasoning cycle. For presentation reasons we will only show
those parts of the state directly relevant to a rule.

Suppose we have already selected an intention (i.e., we are at stage B in Figure 1).
We use the following rule to generate all applicable plans.

P ′ = filter(appPlans(ag)) P ′ �= ∅
< ag ,P , B >→< ag ,P ′, C >

(1)

130 L.A. Dennis et al.

In this rule, filter is an AIL function that, by default, is the identity mapping, but can be
overridden by a particular interpreter to remove some of the plans which AIL considers
applicable (e.g., ones which have already been attempted).

The AIL function appPlans generates the union of two sets.

appPlans(ag) = match plans(ag) ∪ continue(ag) (2)

Informally match plans(ag) produces all the plans applicable to the current intention
by inspection of the plan library. In contrast, continue(ag) produces the plans which
result from continuing to process the current deed stack. Typically the first set will be
non-empty only when the top event in the intention has not yet been planned while
the second will be non-empty only when it has been planned and there is an associated
stack of deeds to process, however the existence of plan revision rules (See Section 4.1)
means that it is possible for both sets to be non-empty in certain situations.

The plans generated by appPlans are tuples consisting of the event, deed stack,
guard stack, and unifier to be added to the current intention. However, they also include
a number (n), representing a number of rows to be dropped from the current intention
before this plan is added (typically, this number would be 1, to remove the ε “no plan
yet” marker; see semantic rule (4)). The need for this is discussed further in Section 4.1.

The interpreter then selects one of these applicable plans, drops the specified num-
ber of rows from the current intention, and replaces them with a new row for each deed
in the plan’s deed stack (paired with the event, unifier, and appropriate guard as sup-
plied by the plan). In the next semantic rule, the selection function ‘Splan’ defaults to
selecting the top plan in the stack but may be overridden if required by a particular
application. We use ‘i’ to denote the current intention.

Splan(P) = (< e, ds , gs, θ, n >)
< ag , i ,P , C >→< ag , (e, ds , gs , θ) @ drop(n, i)[θhd/θ], [], D >

(3)

The top n rows (as specified in the plans generated from appPlans) are dropped from
the intention stack (drop(n, i)), the top unifier on the unifier stack of this new inten-
tion5 is replaced by θ ([θhd/θ]) and the new intention segment (e, p, gs , θ) is joined to
the front of the intention stack (@). The set of applicable plans is emptied. The plans
provided to the agent by the programmer remain in its plan library.

Then the top of the plan is handled by a variety of rules. The following rule shows
how to handle an (achieve) sub-goal not yet achieved. Recall from our discussion of
appPlans that ‘ε’ is a special symbol used to denote “no plan yet”. In our semantics we
use the syntax +!ag to signify the adoption of an achieve goal g (a for “achieve”). This
is a deed when it appears in the deed stack of an intention and an event when it appears
in the event stack – its type is determined by context. When +!ag appears in the event
stack of an intention we may say that the agent has committed to achieving the goal.
The full syntax for AIL can be found in [10].

ag |= gu, ag �|= g
< ag , (e, +!ag, gu , θ); i , D >→< ag , (+!ag, ε, �, θ); (e, +!ag, gu, θ); i , E >

(4)

5 see Section 3.1 for a description of the intention data structure.

A Common Semantic Basis for BDI Languages 131

The rule pushes “no plan yet” on top of the intention’s deed stack. This is associated
with the event +!ag (i.e., the commitment to achieving g) and an empty guard. Note
that ‘|=’ is used to represent the AIL belief checking process. Thus, “ag |= gu” asserts
that the agent believes the guard to be true, while “ag �|= g” asserts that the agent does
not believe g , which can be interpreted as the agent not believing the goal has been
achieved. Belief checking may cause the instantiation of variables.

If a goal is achieved, then we remove it from the top of the intention
ag |= gu, ag |= g

< ag , (e, +!ag, gu, θ); i , D >→< ag , i[θhd(i)/θ ∪ θhd(i)], E >
(5)

Because we want to preserve any decisions about unifiers, the unifier associated with
+!ag is merged with the top unifier of i (the remainder of the intention).

It is worth noting here that AIL does not distinguish between achieve and query
goals. Query goals are easily handled by (5), since ‘|=’ instantiates variables.
AgentSpeak even allows query goals to act as trigger events and match plans if they
do not succeed, so (4) is also used. Perform goals can be handled by a simple modifi-
cation to (4) which does not leave +!pg on the stack. Only maintain goals need to be
treated entirely separately. In AIL, maintain goals insert a new constraint plan in the
library which fires whenever the goal is no longer believed (details of this can be found
in [10]).

Beliefs. All the languages we considered allow new beliefs to be inserted into, and
removed from, the agent’s belief base. However, some (e.g., AgentSpeak) also allow
new plans to be placed in the plan library. We have therefore generalised the concept of
belief to include many aspects of an agent’s internal state, such as the plan library. Belief
updates (i.e., the addition of new beliefs, or the deletion of old beliefs) are tagged by the
relevant part of the state (e.g., +bbb is an instruction to add b to the belief base, while
+ppl is an instruction to add p to the plan library). We have found by this mechanism
that all such updates can be handled essentially by the same rule, the only difference
being the state component that is selected. Rule (6) shows the special version of this
general rule for adding a belief to the belief base6.

ag |= gu
< ag, (e, +bbb , gu, θ); i , I , B, D >→

< ag , i[θhd(i)/θ ∪ θhd(i)], (+bbb , [ε], �, ∅); I , B ∪ {b}, E >

(6)

This causes the top of the current intention to be removed as in rule (5), and also causes
b to be added to the belief base. However, since a belief update may be a trigger for a
plan, we also place a new intention on the intention stack (+bbb , [ε], �, ∅), which has a
“no plan yet” deed stack. This, recall, is how events are represented in AIL.

3.4 Example

We now illustrate the operation of an AIL agent via a simple example. This is loosely
based on a 3APL example available in its user guide7. A robot has a goal to clean rooms.

6 AIL’s actual semantics allows multiple belief updates of mixed types at once resulting in a
rather complex rule but (6) captures the key idea applied to a single update.

7 http://www.cs.uu.nl/3apl/download/java/userguide.pdf

http://www.cs.uu.nl/3apl/download/java/userguide.pdf

132 L.A. Dennis et al.

When the robot believes a room is dirty, the plan is to go to that room and vacuum clean
it. There is insufficient space here to discuss a translation from 3APL to AIL although
we will briefly touch on some of the more interesting issues.

The robot possesses the following plans for cleaning rooms and changing locations.

PLAN 1:
trigger +!aclean()
prefix [ε]
guard stack dirty(Room)

TRUE
body +!agoto(Room)

+!avacuum(Room)

PLAN 2:
trigger +!goto(R)
prefix [ε]
guard stack pos(P)

TRUE
TRUE

body -pos(P)
+pos(R)
+goto(R)

We represent the robot’s plans in table form showing the components introduced in
Section 2. Since 3APL guards are only checked once, the guard is only associated with
the top deed. Note that 3APL goals such as +!aclean() are ‘achieve’ goals and it is
expected that the truth of clean() will be established during execution. (In the sequel
we assume all goals to be achieve goals so we can drop the subscripts.)

Plan 2 is derived from a 3APL capability. The semantics of capabilities is given in a
Hoare-triple like format, for example: {pos(P)} goto(R) {NOT pos(P), pos(R)}.
The plan shows how this is can be transformed into AIL.

Let us consider the execution of an AIL agent which starts out with the goal clean()
and the beliefs pos(room3) and dirty(room1). We examine the intention stack since
this is of the most use in understanding the execution of an AIL agent. We represent
individual intentions as a matrix with four columns as discussed in Section 3.1.

Initially there is one intention, and this has one row to achieve the goal +!clean().
The event is the start of the program. The guard and unifier stacks are initially empty
(left-hand table below). Since the agent does not believe clean(), ε is placed on top of
the plan according to rule (5) with the trigger event noting the need to achieve clean().

trigger deed guard unifier

start +!clean() � ∅
(5)−−→

trigger deed guard unifier

+!clean() ε � ∅
start +!clean() � ∅

Plan 1 now matches the intention. The ‘ε’ is dropped (since it matches the prefix) and
the plan’s new deed stack is joined to the intention’s remaining deed stack. All the deeds
in this new stack are associated with the plan’s trigger.

trigger deed guard unifier

+!clean() +!goto(Room) dirty(Room) Room = room1

+!clean() +!vacuum(Room) � Room = room1

start +!clean() � ∅

This process then repeats to plan goto:

A Common Semantic Basis for BDI Languages 133

trigger deed guard unifier

+!goto(R) -pos(P) pos(P) Room = room1, P = room3, R = room1

+!goto(R) +pos(room1) � Room = room1, P = room3, R = room1

+!goto(R) +goto(room1) � Room = room1, P = room3, R = room1

+!clean() +!goto(Room) dirty(Room) Room = room1

...
...

...
...

AIL now performs the belief updates on the deed stack. These generate new intentions
according to rule (6); let us assume these are not prioritised by the intention selection
process so the intention stack becomes:

trigger deed guard unifier

+!goto(R) +goto(R) � Room = room1, P = room3, R = room1

+!clean() +!goto(Room) dirty(Room) Room = room1

+!clean() +!vacuum(Room) � Room = room1

start +!clean() � ∅
-pos(room3) ε � ∅
+pos(room1) ε � ∅

When we handle this last belief update the unifier is merged into the one for the top of
the first sub-plan, preserving any unifications obtained.

trigger deed guard unifier

+!clean() +!goto(Room) dirty(Room) Room = room1, P = room3, R = room1

+!clean() +!vacuum(Room) � Room = room1

start +!clean() � ∅
...

...
...

...

For lack of space we cannot expound on this example any further.

4 Plan Failure and Plan Revision

In most BDI languages, it is assumed, in general, that once an agent has committed
to a goal, the goal is not abandoned. However, in reality, it is sometimes necessary to
reconsider intentions. Unfortunately, the literature on agent programming languages is
mostly vague about this process.

4.1 Plan Revision

3APL uses plan revision rules to replace the prefix of whole intentions with revisions.
This influenced the design of AIL plans.

Consider an intention to give Jane a present, which has formed the deed stack: check
what is in the Harrods department store, go to London, and purchase the gift. So our
intention stack (ignoring guards) is represented as follows:

trigger deed unifier

+!give(X1, Y1) +!in harrods(Y1) X1 = jane, Y1 = X

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

134 L.A. Dennis et al.

Let us suppose that achieving +!in harrods(Y1) instantiates Y1 to ‘computer’ yielding
the new intention stack:

trigger deed unifier

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Suppose also that we have a plan revision rule that says that instead of going to London
and buying a computer in Harrods we should, instead, purchase it from Dell:

PLAN 3:
trigger Any

prefix gotolondon

purchase(computer, harrods)

guard stack TRUE

body purchase(computer, dell)

The prefix is of length 2 so we drop two items from our intention. The last trigger of
the dropped section is +!give(X1, Y1) so that unifies with Any and we replace the
dropped parts of the stack with the new deed stack:

trigger deed unifier

Any purchase(Y1, dell) X1 = jane, Y1 = X, Y1 = computer, Any = +!give(X1, Y1)

start +!give(jane, X) ∅

This has preserved the unifications already decided upon (e.g., that Y1 = computer)8.

4.2 Plan Failure

The original AgentSpeak specification [23] includes a −!g construct in its syntax but
its semantics has never been made clear and therefore it is often ignored in attempts to
model the language. For instance [17], which embeds AgentSpeak in an early version
of 3APL, ignores this aspect of the AgentSpeak semantics. The Jason interpreter [2] for
AgentSpeak posts drop goal (−!g) events when a plan fails [19]. There are no default
rules for handling these events but it is possible to write handlers as a plan, for instance:

-!g:true <- +!g

which forces backtracking9, or other plans for handling failure. While there is no default
backtracking behaviour in either AgentSpeak or 3APL, METATEM uses backtracking
as a default revision procedure.

It seemed necessary to provide a mechanism by which the designer of an AIL com-
piler may define plan failure handling behaviour without providing unnecessary ad-
ditions to the language. This meant that plan failure had to be defined by plans. We
therefore needed to introduce a distinguished symbol ‘backtrack’ into our deed syntax
which, if used, causes the execution of the AIL operational semantics rules to system-
atically retrace their steps attempting different instantiations and rules, as in traditional
backtracking.

8 This does mean that incautious use of plan revision can preserve unexpected unifications.
9 Note that this backtracking only retries the goal – the programmer must enforce the use of a

different plan or this could potentially cycle.

A Common Semantic Basis for BDI Languages 135

We adopt the Jason idea of posting a drop goal event when applicable plans cannot be
found or actions fail. When this happens the current trigger event is selected and posted
as a drop goal. A particular AIL interpreter need never select such events for handling.
However, if a drop goal event is selected, then it is checked against all outstanding
intentions to see if it unifies with an event (i.e., one of the goals or sub-goals to which
the intention has committed). If it does, ‘ε’ is placed on top of the plan for that intention
with −!g as its trigger. We plan to extend the semantics to allow the option of modifying
just one intention. This allows us to model 3APL’s drop goal constructs10.

Any plans available for dropping goals can then be applied at the applicable plan
stage. Possible plans include:

PLAN: Actually drop a goal
trigger -!g
prefix ε

guard stack TRUE

body -!g

PLAN: Retry a goal
trigger -!g
prefix ε

guard stack TRUE

body +!g

PLAN: Traditional backtracking
trigger -!g
prefix ε

guard stack TRUE

body backtrack

The first of these will place -!g on top of the deed stack. We have specified the handling
of a -!g deed in AIL as dropping everything on the goal stack after that goal was first
committed to. This also drops all unifiers allowing different plans to be used.

ag |= gu +!g = events(i)[n] ∀m > n.¬(+!g = events(i)[m])
< ag , (e, −!g, gu, θ); i , D >→< ag , drope(n, i), E >

(7)

where events(i)[n] is the nth trigger event on the intention stack.
Let us reconsider purchasing the present for Jane, suppose we are unable to get to

London. The failure of the action gotolondon will post a new “drop goal” intention:

trigger deed unifier

-!give(X1, Y1) ε X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Assuming this intention is selected, a new merged intention is generated:

trigger deed unifier

-!give(X1, Y1) ε X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Upon using the plan “Actually drop a goal” above, we arrive at:

trigger deed unifier

-!give(X1, Y1) -!give(X1, Y1) X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Now, (7) causes us to drop back to the first appearance of +!give(X1, Y1):

10 Mehdi Dastani, Personal Communication.

136 L.A. Dennis et al.

trigger plan unifier

start +!give(jane, X) ∅

We have lost our commitment to giving Jane a computer (since it is such commitments
that may have caused failure).

5 Concluding Remarks

This paper provides an overview of our Agent Infrastructure Layer (AIL), capturing
all major features of common BDI languages. The main purpose of AIL is to provide
a common (operational) semantics for large fragments of these languages in order to
aid the transfer of new ideas and techniques and to allow the development of common
verification tools and technologies. The development of AIL has highlighted several
subtle language design decisions, which we have described in the paper. In this way,
AIL serves a valuable role in clarifying and formalising BDI language semantics.

In order to provide this semantics, we needed to characterise the shared concepts of
beliefs, goals, actions, and plans as well as accounting for common variations such as
the use of events and deed stacks. Thus, our semantics uses a complex data structure to
represent intentions associating events (which include outstanding goals) with stacks of
deeds (which include belief updates) to be performed. A generalised notion of a plan is
developed to be used in this data structure which captures many of the notions of plans
available in the literature.

While we have described aspects relating to goals, beliefs, plans, etc. within agents,
AIL itself covers much more than we addressed in this paper [10]. Three important
aspects that were omitted are mentioned briefly below.

Constraints. An additional construct within the agent’s state is actually provided
within AIL. Constraints describe pre-conditions that must hold before a given action
may be performed or a goal adopted. These preconditions are checked just like the
guards of plans and it is here that we particularly expect the extended notion of belief
to become useful (so constraints may express that the agent has particular goals or par-
ticular plans in its library). It is important to note that whereas an agent selects only one
applicable plan it must satisfy all relevant constraints. The generalised notion of con-
straint allows us to express a wide variety of permissions and prohibitions. If an action
is prohibited, the pre-condition is simply ⊥ (false), so it always fails and the action is
never taken (or the goal never adopted). If certain actions are only permitted in certain
situations, or to agents who have adopted certain roles, these can also easily be mod-
elled (e.g., an agent can check if it is performing the appropriate role). The operational
semantics of AIL, therefore, forces an agent to check if there are any constraints and, if
so, to see that they hold before it takes an action or selects a plan.

Communication. Armed with constraints, we are able to describe a wide range of
communication protocols. A common concept among BDI languages is that messages
should contain both content and a performative (which determines what should be done
with the content). Communication protocols are established by agreeing on constraints
associated with these messages (e.g., which performatives can be used in a given stage

A Common Semantic Basis for BDI Languages 137

of a communication protocol) and associating particular plans to be enacted on their
receipt. Variations on these basic ideas are present in [27,3,13].

In this approach a communication protocol would consist of a selection of plans
and constraints on send actions and received events. Sending messages is treated as
an action by AIL, and constraints are checked in the same way as they are for any
action. The last phase of the AIL reasoning cycle is dedicated to handling the receipt of
messages.

I ′ = {(+received(ag ′, ilf , φ), [ε], �, ∅)|
< ag ′, ilf , φ >∈ In ∧ check constraints(+received(ag ′, ilf , φ)}

< ag , I , In, F >→< ag , I ′@I , [], A >
(8)

In this rule, the intention stack, I , is extended with a set of +received events, one for
each message in the inbox whose relevant constraints are satisfied. These events can
then trigger appropriate plans for reacting to the message. The use of constraints allows
AIL to filter out certain messages; this allows AIL to handle concepts such as the social
acceptability of messages which are important, for example, in Jason [3].

Organisational Structures. We have designed AIL aiming, in future work, not only to
be able to accommodate a variety of languages but also to account for future develop-
ments of the existing languages. For example, most languages currently concentrate on
individual agents, so it is likely that those languages will be extended to include con-
structs to support the social level of multi-agent systems, particularly the notion of “or-
ganisations” [25]. Important common concepts in this area are the ability for agents to
form groups which have and communicate goals, plans, permissions, and prohibitions.
Furthermore, groups of agents need to be able to organise themselves into organisa-
tions, with specific roles within those organisations and specific relationships between
roles. All of this implies that such groups adhere to certain communication protocols;
[12,25,7] all describe variants which rely on these basic constructs as building blocks.
Clearly any machinery for organisation and communication within AIL needed, at a
minimum, to be able to express these notions and preferably needed to be customisable
to allow variations on their basic forms.

AIL is therefore being designed with simple constructs which allow it to model many
of the most obvious developments in this area. Of the BDI languages we have exam-
ined, only METATEM has any primitives for describing social organisations of agents
(all other languages have messaging constructs and many are investigating frameworks
for describing organisational structures). AIL’s social organisations are currently based
on METATEM’s groups which flexibly allow the concepts of organisation and role to
be captured [11,16]. In order to properly express permissions and prohibitions it was
necessary to provide AIL with constraints as described above. We also needed to anno-
tate aspects of the agent’s internal state with sources of information/goals and define a
concept of the relevance of a constraint or plan to a situation. The treatment of groups
of agents as agents in their own right also provides a natural mechanism for introducing
concepts of modularity into agent programs.

Space restrictions preclude further discussion of this important item, but we note that
it forms a key part of our future work.

138 L.A. Dennis et al.

Future Work

As mentioned above, a key aim of this work is to provide a basis for the formal veri-
fication of programs written in BDI-based programming languages. AIL itself still re-
quires refinement, in particular in the communication and organisation aspects men-
tioned above. Thus, deeper analysis of these aspects will be carried out, and appropriate
high-level primitives will be developed.

Also in the short term, planned work revolves around the implementation of AIL (in
JAVA) and the provision of compilers for, at least, significant fragments of AgentSpeak
and 3APL. In the longer term, the correctness of these compilers needs to be addressed
and verification tools for AIL developed. In particular, we aim to extend JPF [26] so
that AIL classes are treated as internal classes of JPF, which should provide for efficient
verification of agent programs written in various BDI languages.

An additional aim, within our future work, is to develop a subset of AIL, currently
called AIL−, which: captures most reasonable BDI programs, has a very clear and
straightforward semantics, and is easily implementable. Currently, AIL− is conceived,
in particular, as reducing the number of goal types available and the mechanisms for
handling plan failure. It will also eliminate some of the flexibility of the current group
structuring mechanisms. AIL− would then provide the basis for a lightweight, efficient,
and verifiable agent programming language.

References

1. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Multiagent Systems, Artificial Societies, and
Simulated Organizations, vol. 15, Springer, Heidelberg (2005)

2. Bordini, R.H., Hübner, J.F.: Jason: A Java-based interperter for an extended version of
AgentSpeak (2006), http://jason.sourceforge.net

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley Series in Agent Technology, John Wiley & Sons, Chich-
ester (2007)

4. Braubach, L., Pokahr, A., Farwer, B.: On Formalising Jadex. Personal Communication (Jan-
uary 2007)

5. Clancey, W., Sierhuis, M., Kaskiris, C., van Hoof, R.: Advantages of Brahms for Specifying
and Implementing a Multiagent Human-Robotic Exploration System. In: Proc. 16th Inter-
national Florida Artificial Intelligence Research Society Conference (FLAIRS), pp. 7–11.
AAAI Press, Menlo Park (2003)

6. Dastani, M.: 2APL: A Practical Agent Programming Language. In: AAMAS conference
PLDT-MAS Tutorial (2007)

7. Dastani, M., Dignum, V., Dignum, F.: Role-Assignment in Open Agent Societies. In: Proc.
2nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
ACM Press, New York (2003)

8. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Programming multi-agent systems in
3APL. In: Bordini et al, [1], ch. 2, pp. 39–67.

9. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Goal Types in Agent Programming. In:
Proc. 17th European Conference on Artificial Intelligence (ECAI) (2006)

10. L. A. Dennis. Agent Infrastructure Layer (AIL): Design and Operational Semantics v1.0.
Technical Report ULCS-07-001, Department of Computer Science, University of Liverpool
(2007), http://www.csc.liv.ac.uk/research/techreports/

http://jason.sourceforge.net
http://www.csc.liv.ac.uk/research/techreports/

A Common Semantic Basis for BDI Languages 139

11. Dennis, L.A., Fisher, M., Hepple, A.: Language constructs for multi-agent programming. In:
Proc. 8th Workshop on Computational Logic in Multi-Agent Systems (CLIMA) (2007)

12. Gutknecht, O., Ferber, J., Michel, F.: From Agents to Organizations: An Organizational View
of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

13. FIPA. FIPA Communicative Act Library Specification. Technical Report FIPA00037, Foun-
dation for Intelligent Physical Agents(2002)

14. Fisher, M.: MetateM: The story so far. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni,
A.E.F. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 3–22. Springer, Heidelberg
(2006)

15. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational Logics and Agents — A
Roadmap of Current Technologies and Future Trends. In: Computational Intelligence (in
press)

16. Hepple, A., Dennis, L., Fisher, M.: A common basis for agent organisation in BDI languages.
In: Languages, Methologies and Development tools for Multi-Agent Systems (LADS 2007)
(2007)

17. Hindricks, K.V., Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: A Formal Embedding of
AgentSpeak(L) in 3APL. In: Antoniou, G., Slaney, J.K. (eds.) Canadian AI 1998. LNCS,
vol. 1502, pp. 155–166. Springer, Heidelberg (1998)

18. Hindricks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4), 357–401 (1999)

19. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Programming Declarative Goals using Plan
Patterns. In: Proc. 4th International Workshop on Declarative Agent Languages and Tech-
nologies (DALT), Hakodate, Japan, pp. 65–81 (May 2006)

20. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote Agent: To Boldly Go Where No
AI System Has Gone Before. Artificial Intelligence 103(1-2), 5–48 (1998)

21. Pokahr, A., Braubach, L., Lamersdorf, W.: A Flexible BDI Architecture Supporting Extensi-
bility. In: Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT), pp. 379–385 (2005)

22. Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In:
Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

23. Rao, A.S., Georgeff, M.: BDI Agents: from theory to practice. In: Proc. 1st International
Conference on Multi-Agent Systems (ICMAS), San Francisco, pp. 312–319 (1995)

24. Sierhuis, M.: Multiagent Modeling and Simulation in Human-Robot Mission Operations
(2006), http://ic.arc.nasa.gov/ic/publications

25. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Technical Re-
port UU-CS-2004-015, Institute of Information and Computing Sciences, Utrecht University
(2004)

26. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: Proceedings of
the Fifteenth International Conference on Automated Software Engineering (ASE 2000),
Grenoble, France, September 11-15, pp. 3–12. IEEE Computer Society, Los Alamitos (2000)

27. Wooldridge, M., Fisher, M., Huget, M., Parsons, S.: Model Checking Multiagent Systems
with MABLE. In: Proc. 1st International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS) (July 2002)

28. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Kluwer, Dordrecht (1999)

http://ic.arc.nasa.gov/ic/publications

Adding Structure to Agent Programming Languages

Peter Novák and Jürgen Dix

Department of Informatics, Clausthal University of Technology, Germany
{novak,dix}@in.tu-clausthal.de

Abstract. There is a huge gap between agent programming languages used for
industrial applications and those developed in academia. While the former are
mostly extensions of mainstream programming languages (e.g. Java), the latter
are often very specialized languages, based on reactive rules. These specialized
languages enjoy clear semantics and come with a number of knowledge repre-
sentation features, but lack important aspects such as code re-use, modularity,
encapsulation etc.

We present a method to extend the syntax of existing specialized agent ori-
ented programming languages to allow more efficient hierarchical structuring of
agent programs. We illustrate our method through a simple language based on
reactive rules. We then gradually extend the core language by several higher level
syntactic constructs, thus improving the support for source code modularity and
readability.

1 Introduction

While providing a clear and robust theoretical semantics and easy integration of power-
ful knowledge representation and reasoning techniques, an ideal specialized program-
ming language for agents with mental states must also take into account engineering
aspects of software development as equally important issues. We believe that an easily
readable syntax of a programming language, allowing conceptual encapsulation on the
source code level, and support for a program modularization, are crucial issues in de-
sign of programming languages for cognitive agents. Such abstraction has to be both
(1) a practical means for modular structuring of an agent program source code, as well
as (2) a methodological tool guiding translation from an analytical model to a real
source code implemented in a rule based programming language.

In this paper, we demonstrate how the syntax of specialized agent oriented program-
ming languages, based on reactive rules, can be carefully designed to approach the
requirements of modern programmers. We understand this work as a work in progress
towards development of high level abstract concepts for development of agents with
mental states, rather than a proposal for an ultimate solution of this problem.

Our approach follows the tiered approach to programming language design [12] and
focuses on introducing purely syntactical constructs, rather than making the semantics
of the language more complicated. As a basis for further enrichment, we first propose
a simple abstract programming language based on reactive rules (Section 2) together
with an interpreter for it. The main focus of this paper is on gradually extending the
core language by several higher level syntactic constructs (Section 3), thus improving
the support for source code modularity and readability.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 140–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adding Structure to Agent Programming Languages 141

One of the main results in this paper is the introduction of a mental state transformer
(mst), an extension based on the functional view on an agent program. We propose
a compiler transforming a program using the extended syntax into the core language.
Discussion on related and future work (sections 4 and 5) conclude the paper.

2 Core Programming Language

The architecture of specialized programming languages for agents with mental states
can be naturally decomposed in two parts. Firstly, the language has to provide means
for modeling the internal structure of an agent’s mental state. Secondly, it has to feature
control structures for encoding transitions between these states. We are convinced, that
these aspects of an agent oriented programming language should be studied separately.
In this work, we focus on dynamic aspects of an agent programming language.

The starting point for the design of the core language is the approach applied in
the Modular BDI architecture [15] and IMPACT [17], where authors abstract from the
internal structure of agent’s mental state. The structure of a mental state reduces to a
black box providing only a query and update interface, while the programming language
itself facilitates the control over mental state transitions.

An agent program in the core language consists of a set of reactive rules. Given a
query, when a reactive rule evaluates to true in the current mental state, then an update
operation is performed on this state. The semantics of a query and update operation is
provided by abstract operators, specific to the internal structure of agent’s mental states.
We also abstract from the interface to agent’s environment. It can be handled by queries
(sensor interface) and updates (effector interface) integrated in the implementation of
the mental state as well (see Modular BDI architecture presented in [15]).

The semantics of an agent system is then provided in terms of a transition system
over a set of mental states. We give both operational and denotational views on the
semantics of the core language. The operational semantics shows the execution of a
single primitive construct of the language, while the denotational viewpoint provides
a functional view on the semantics of an agent program. This view will later turn out
to be crucial for modularizing the language. We conclude by detailing the interpreting
algorithm and proposing a concrete syntax for the core programming language.

2.1 Abstract Syntax

We abstract from the internal structure of mental states by defining them as a theories
in a given language L. This abstraction keeps the concept of a mental state modular and
allows to examine and update it by means of abstract query and update operations.

Definition 1 (language, formula, query, update). Let L be a language of mental states.
Then a mental state σ is a theory in this language and a formula ϕ ∈ σ is called a
mental state formula. Query and update languages LQ and LU are defined as follows:

– if ϕ ∈ L, then Q(ϕ) ∈ LQ and U(ϕ) ∈ LU ,
– if φ1, φ2 ∈ LQ then φ1 ∧ φ2 ∈ LQ, φ1 ∨ φ2 ∈ LQ and ¬φ1 ∈ LQ,
– � ∈ LQ, ⊥ ∈ LQ, nop ∈ LU

142 P. Novák and J. Dix

While update formulas are quite simple (a single update operation at a time) query for-
mulas can be more complex. They can involve conjunctions, disjunctions and negations.
Primitive constructs of the language are composed of query and update formulas.

Definition 2 (transition rule, agent program). Let LQ and LU be query and update
languages and φ ∈ LQ, ψ ∈ LU be formulas. We say that a rule of the form φ −→ ψ
is a transition rule. An agent program is a set of rules

P = {φ −→ ψ| φ ∈ LQ and ψ ∈ LU}

composed of query and update formulas from the corresponding query and update lan-
guages LQ and LU . We also say that P is an agent program in L.

2.2 Semantics

Given an agent program, we show first how transition rules are interpreted as single
transitions. Then, we also provide denotational semantics for a program to show a func-
tional view of its meaning. The semantics of transition rules is defined in terms of
abstract query and update operators. This makes the semantics of the core language
modular and independent on the internal structure of agent’s mental states.

Definition 3 (abstract query/update operators). Let L be a language of mental states
and σ ⊆ L be a mental state (theory) in that language. Let also ϕ ∈ L be a formula.
An operator QueryL is a mapping

QueryL : L × 2L → {true, false}; 〈ϕ, σ〉 �→ QueryL(ϕ, σ)

The corresponding update operator UpdateL is a mapping

UpdateL : L × 2L → 2L; 〈ϕ, σ〉 �→ UpdateL(ϕ, σ)

We assume QueryL(�, σ) = true, QueryL(⊥, σ) = false , UpdateL(nop, σ) = σ.

In the case of a query, the result is the truth value of ϕ w.r.t. σ. The result of an update
operator application is a new mental state σ′ ⊆ L, which reflects an update ϕ on σ.

For practical purposes, query and update operators QueryL and UpdateL should be
computable procedures evaluating formula ϕ ∈ L against a theory σ ⊆ L.

The semantics of transition rules is defined in terms of query and update operator
evaluations. We relate formulas of the form Q(ϕ) and U(ϕ) to applications of corre-
sponding abstract operators QueryL and UpdateL to the actual mental state.

Definition 4 (semantics of queries and updates). Let L be a mental state language
and LQ and LU be query and update languages over L. Let also σ be a mental state.
Application of a query operator QueryL is denoted by |= and ⊕ denotes an application
of an update operator UpdateL on a mental state. The semantics of a ground query
formula φ ∈ LQ is defined as follows

– if φ = Q(ϕ) and ϕ ∈ L, then σ |= φ iff QueryL(ϕ, σ) = true, otherwise σ
|= φ
(i.e. QueryL(ϕ, σ) = false),

Adding Structure to Agent Programming Languages 143

– if φ = ¬φ′ and φ′ ∈ LQ, then σ |= φ iff σ
|= φ′,
– if φ = φ1 ∧ φ2 and φ1, φ2 ∈ LQ, then σ |= φ iff σ |= φ1 and σ |= φ2,
– if φ = φ1 ∨ φ2 and φ1, φ2 ∈ LQ, then σ |= φ iff σ |= φ1 or σ |= φ2

and for an update formula ψ ∈ LU :

– if ψ = U(ϕ) and ϕ ∈ L, then σ ⊕ ψ = σ′ iff
UpdateL(ϕ, σ) = σ′.

Note, that we do not define a more powerful notion of negation in query formulas (e.g.
default negation): This would require a deeper insight in the structure of mental state.
The interpreter of the language only needs to know whether a query is satisfied or not,
regardless of the kind of specialized reasoning hidden behind the internal semantics of
the query operator.

An agent system moves from one mental state to another by applicable rules.

Definition 5 (agent system transition). An agent system moves from σ to σ′:

σ |= φ, σ ⊕ ψ = σ′

σ −→ σ′ ,

when φ −→ ψ is an applicable transition rule (i.e. σ |= φ).

Finally, we specify a semantics of an agent program in terms of possible evolutions of
within the transition system.

Definition 6 (agent system: operational view). A computation run Comp(σ0) of an
agent system over a language of mental states L, described by an agent program P , is
a possibly infinite sequence σ0, . . . , σn, . . . of mental states over L (∀i : σi ⊆ L), so
that ∀i ≥ 0 : σi −→ σi+1 is an agent system transition induced by some rule ri ∈ P .

The agent system is then characterized by the set of all possible computation runs
induced by the program P .

The operational semantics offers a procedural view on the agent program as a specifi-
cation of a problem subspace in terms of allowed computation runs. It gives a rather
localized perspective on the meaning of a single transition rule w.r.t. to a given agent
system evolution. But we can also see a single rule φ −→ ψ as a prescription of a
transition between classes of mental states. The query part φ divides the space of men-
tal states in two classes, according to the truth value of formula φ. When the system
happens to be in one of the states in which φ evaluates to true, the update formula ψ
specifies a direction in which it should move in the next step. The rule then prescribes
a transition from the class of states in which φ holds to the set of states resulting from
application of update formula ψ to it. This view inspires the alternative semantics of an
agent system: A set of transition rules is a partial function over mental states.

Definition 7 (agent system: denotational view). Let L be a language of mental states
and P an agent program in L. The program P is characterized by a partial function

FP : 2L × LU −→ 2L; 〈σ, ψ〉 �−→ σ′

144 P. Novák and J. Dix

where σ, σ′ ⊆ L are mental states and ψ ∈ LU is an update formula. FP(σ, ψ) = σ′

iff ∃(φ −→ ψ) ∈ P , such that σ −→ σ′ is a transition induced by this rule. We say that
P is characterized by FP . We also say that the set of states ΣFP over which the partial
function FP is defined is the application domain of FP .

The function FP is a partial function defined only for those mental states in which some
rule r ∈ P can be applied. I.e. those, in which a query formula of some rule from the
program P is satisfied. It completely characterizes the agent system described by P .

The operational semantics provides a view on an agent program as an explicit charac-
terization of a problem subspace in terms of possible agent system evolutions. Comple-
mentary to that, the denotational semantics suggest a specification of the same problem
space in terms of a specification of all the considered sets of mental states and all the
allowed transitions between them. We stress here, that in essence both provided seman-
tics allow formalization of a same system. They just reflect two different views on its
specification. While the first shows how an existing agent program is interpreted, the
second offers more methodological insight on how to analyze, create and organize such
programs.

2.3 Concrete Syntax and Interpreter

To complete our core programming system definition we provide a concrete syntax and
an interpreter algorithm for it. Our syntax proposal of the core language is straight-
forward. The EBNF of the core programming language is as follows (white space and
string definitions are omitted):

<program> := <rules>
<rules> := <rule> | <rule> <rules>
<rule> := "when" <queries> "then" <update> ";"
<queries> := <query> | "not" <queries> |

"(" <queries> "and" <queries> ")" |
"(" <queries> "or" <queries> ")"

<query> := "true" | "false" | "query" "[{" <qformula> "}]"
<update> := "nop" | "update" "[{" <uformula> "}]"

<qformula> and <uformula> are well formed formulas from LQ and LU re-
spectively. Query and update non-terminals are defined using quite complex bracket
delimiters. This is because the syntax of <string> non-terminal can be arbitrarily
complex and might involve various kinds of character combinations possibly including
characters like {, or }1.

We finally propose an extremely simple and straightforward interpreting algorithm
following the generic scheme applied in other languages like e.g. 3APL. Algorithm 1
lists the detail pseudocode of the core language interpreter.

Given a current mental state, the interpreter first selects all the rules applicable in that
state, then non-deterministically chooses one of them and applies its update formula to
the actual mental state. The result of this update operation is a new mental state which

1 In practice, probably additional handling of special character classes would be necessary.

Adding Structure to Agent Programming Languages 145

becomes the current one in the subsequent interpreter iteration. In the case no rule is
currently applicable, the interpreter loops and waits until the mental state changes by
means of external events. The details of the interpreter algorithm can be found in [14].

Algorithm 1. run(σ0, P)
σ = σ0
loop

ρ = {(φ −→ ψ) ∈ P|σ |= φ}
if ρ
= ∅ then

non-deterministically choose (φ −→ ψ) ∈ ρ
σ = σ ⊕ ψ

end if
end loop

We assume here, that the selection function which chooses the rule to be applied from
the set of all applicable rules conforms to a fairness condition (inspired by a similar
weak-fairness condition in GOAL [8]):

Condition 1 (fairness condition). It is not the case that for a given computation run
Comp(σ0) a rule r ∈ P is always applicable from some point in time on and never
selected for the execution.

An interpreter as described above is inherently non-deterministic. It is desirable to allow
a programmer to secure a higher degree of determinism in the rule selection, when
needed. To this end, we introduce in Subsection 3.1 a simple syntactic extension of the
core language facilitating a finer grained control of the rule selection mechanism.

Note also, that our core language is intentionally oversimplified. For the sake of clar-
ity, we did not introduce variables in transition rules and we also define only atomic
updates without chaining of update formulas. Although these trivial extensions seman-
tically enhance the language and in practice would be crucial for a practical use, they are
not important within the scope of this paper. For introducing such language features we
refer to [15], where we introduced them to a language similar to the one discussed here.
We also discuss the problems following from introducing variables to the language in
Section 5.

Example 1 (stock exchange agent). Consider an agent managing its user’s stock port-
folio. Given a mental state implementation in a Prolog-like language, a simplified pro-
gram for buying the title MSFT might look like the following:

when [{ wants(MSFT) }] and [{ price(MSFT)<avg(MSFT,12h) }]
then [{ act(issue_order(buy(MSFT,10))) }] ;

when [{ price(MSFT)<max(MSFT,180d) }] and [{ price(MSFT)<avg(MSFT,7d) }]
then [{ introduce_goal(wants(MSFT)) }] ;

The agent buys the stock MSFT when it knows it wants it and its price falls under
the last 12 hours average. Similarly, when the price of the stock is low, according to the
agent’s analysis, it introduces a desire to buy the stock.

146 P. Novák and J. Dix

3 Extensions

The core programming language as it is defined in the previous section is still quite
rigid. It is hardly imaginable for a programmer to easily manipulate an unstructured
and possibly huge set of reactive rules. Therefore, in this section we propose several
extensions of the core language enhancing the flexibility in structuring the source code
of an agent program.

To introduce various programming language extensions we follow the tiered ap-
proach to design a programming language [12]. This leads to a layered language pro-
cessing structure: a core language interpreter and a compiler with integrated macro
preprocessor. The compiler translates programs written in an extended language, using
high level language features, into an equivalent program in the core language.

The tiered structure helps to maintain the simplicity and clarity of the programming
language semantics and at the same time allows further extending of the language. The
integration of a powerful macro language preprocessor allows a limited support for
custom-made language extensions.

Firstly, we introduce the abstraction of mental state transformer (mst) inspired by the
denotational view on an agent program. Then the “when-then-else” construct, extending
the mental state transformer syntax, is defined. It facilitates structuring applicable and
not applicable rules. For both of these extensions we provide a detailed translational
semantics into the core programming language, which should serve as a basis for the
language compiler implementation.

Secondly, we propose several extensions based on a macro expansion mechanism.
The most important one is the construction of a named mental state transformer, which
utilizes the previously introduced plain mental state transformer extension. Named
mental state transformers provide a powerful means for agent program decomposition
and modularization. To define the precise meaning of this construct, we also provide a
translation to denotational semantics of standard mst’s.

Finally, we mention several other, rather trivial, extensions based on macro expan-
sion, which show the way how to further enrich and simplify the programming language
syntax. More detailed description can be found in the extended version [14].

3.1 Core Language Extensions

Mental state transformers (mst). Denotational semantics of agent programs provides
a functional view on sets of transition rules: Any set of rules can be considered an agent
program of its own. Using this idea, we define a structural decomposition of an agent
program in subunits and provide means for composing them into compound structures.
According to Definition 7, a set of transition rules is a partial function, transforming a
class of mental states to another class of mental states by means of performing updates
on them. We call such a set of rules a mental state transformer (mst)2.

Obviously, by unification of two mst’s we obtain a new mst, which is defined over a
larger class of mental states than the two original ones. Similarly, by specialization of
all the query formulas of a set of transition rules, we again obtain a new mst defined

2 The name mental state transformer is inspired by a feature of the language GOAL [8]: how-
ever, the semantics is different.

Adding Structure to Agent Programming Languages 147

on a subclass of mental states of the original one. Hence the agent program source
code can be hierarchically structured in terms of compound structures, mst’s, which are
combined by means of generalization and specialization.

Following the tiered specification approach, we first provide a modified syntax of
agent program and subsequently define a translational semantics into the core language
syntax, introduced in Subsection 2.3. For clarity, we also provide a constructive deno-
tational semantics (using EBNF).

<program> := <transformer>
<transformer> := <update> ";" |

"{" <transformer>* "}" |
"when" <queries> "then" <transformer> ";"

We get the extended programming language syntax by replacing the original defi-
nition of <program> and adding the definition of <transformer> to the syntax
definition from Subsection 2.3. Obviously, the new syntax subsumes the old one. Defi-
nitions of <rules> and <rule> are obsolete and replaced by <transformer>.

Abstraction of mental state transformer provides a means for hierarchical nesting of
transition rules of the core language. A primitive mst specifies a single update operation
ψ. It is a shortcut for the fully expanded transition rule � −→ ψ, however it helps
translating the original syntax of transition rules to that of mst’s.

Definition 8 (mst: translational semantics). Let τ be a mental state transformer. Then
τ is said to be an agent program with mental state transformers and the corresponding
core language program P is constructed as follows3:

1. iff r ∈ τ is <update> , then “when true then r” ∈ P ,
2. iff r ∈ τ is a plain transition rule of the form “when Q then U”, where Q and

U are <queries> and <update>, then also r ∈ τ ′,
3. iff r ∈ τ is “when Q then τ ′” where Q is <queries> and τ ′ is a plain set of

transition rules, then for each rule r ∈ τ ′ of the form “when Q′ thenU ′” a rule
“when Q and Q′ then U ′”∈ P . Q and U are <queries> and <update>
respectively.

For multiply nested mst’s, the transformation, specified by Item 3 should be performed
bottom-up from the innermost nesting, which contains either a simple update, or a set
of plain transition rules. A corresponding denotational semantics for mst’s shows how
the original notion of agent program is reconditioned.

Definition 9 (mst: denotational semantics). Let L be a language of mental states. A
mental state transformer τ is then characterized by a partial function over mental states
F as follows

1. primitive mst τ = {φ −→ ψ} is characterized by F(σ, ψ) = UpdateL(ψ, σ),
where ψ ∈ LU , φ ∈ LQ and the rule φ −→ ψ is applicable in σ ⊆ L. The
application domain of F is ΣF = {σ|σ |= φ}.

3 For better readability, we omit the syntactic sugar w.r.t. the language EBNF.

148 P. Novák and J. Dix

2. if mst τ ′ is characterized by F ′ and φ ∈ LQ is a query formula, then mst τ =
{φ −→ τ ′} is characterized by partial function F(σ, ψ) = F ′(σ, ψ) with corre-
sponding application domain ΣF = {σ|σ ∈ ΣF ′ ∧ σ |= φ}.

3. if mst’s τ ′and τ ′′ are characterized by F ′ and F ′′ correspondingly, then mst τ =

τ ′ ∪ τ ′′ is characterized by F(σ, ψ) =

{
F ′(σ, ψ) if σ ∈ ΣF ′

F ′′(σ, ψ) if σ ∈ ΣF ′′
with the corre-

sponding application domain ΣF = ΣF ′ ∪ ΣF ′′ .

A simple rule is a primitive mst (Item 1). Primitive elements can be combined to com-
pound mst’s by means of generalization (Item 3) and specialisation (Item 2). Note, that
according to Definition 8, Item 1, a simple update formula ψ serves as a shortcut for a
trivial rule � −→ ψ: a plain update formula is the most primitive mst.

An agent program is also a mst. The concept of mental state transformer provides a
functional view on an agent program as composed of conceptually encapsulated sub-
units, which are again composed of lower level subunits (mst’s) of the same type.

When-then-else. When in a given mental state several transition rules are applicable,
the interpreter is supposed to non-deterministically choose one of them. A developer
might need to restrict and narrow the choice of the interpreter’s selection function. In
the core language, this can be done by writing complex queries, so that the number of
applicable rules in a certain mental state is minimized and in turn, the number of states
in which a rule is applicable is minimized as well.

The abstraction of the mental state transformer introduced nested rules, allowing a
developer to restrict the scope of applicability of the inner rule by the query of the outer
one (“when-then” construct). As we already said above, according to its validity, a
query divides a set of mental states to two classes. By a trivial extension of the “when-
then” construct to handle also the “-else” branch, the programmer gets a means to
specify mental state transformers for both of them. This helps to narrow the interpreter’s
choice using a compact syntax.

<transformer> := "when" <queries>
"then" <transformer>
"else" <transformer>

Definition 10 (mst: translational semantics cont.)

4. iff r ∈ τ is “when Q then τ ′ else τ ′′ ”, where Q is <queries> and τ ′, τ ′′

are plain sets of transition rules, then for each rule r ∈ τ ′ of the form “when Q′

then U ′” a rule “when Q and Q′ then U ′”∈ P . Similarly for each rule
r ∈ τ ′′ a rule “when ¬Q and Q′ then U ′”∈ P . Q′, U ′ are <queries>
and <update> respectively.

By introducing sequences of nested rules of the form “when Q1 then τ1 else
when Q2 then . . . else when Qn then τn;” a programmer gradually restri-
cts the choice of the interpreter using a compact syntax without annoying repetitions.
An interesting consequence of using “when-then-else” construct is that the program can
be read in a sequential way, although it is not sequential in nature.

Adding Structure to Agent Programming Languages 149

Example 2 (stock exchange cont.). We modify the agent program from Example 1 to
drop the goal to buy stock when there is a market turmoil going on. Otherwise it should
behave as in Example 1.

when [{ news(’overtake’)>2 }] and [{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]
then [{ drop_goal(wants(MSFT)) }]
else { %% Example 1 code %% } ;

Market turmoil is defined as a state, when at least two news about a company overtake
arise and market index average in the last five hours falls more than 30% under the last
two days average. Note, that in the core language, the equivalent program would require
three separate transition rules.

3.2 Macro Extensions

As we already indicated at the beginning of this section, we propose integrating a macro
language into the compiler. In the following, we introduce several extensions exploiting
a macro expansion. In practice we have in mind employing a robust macro preprocessor
like e.g. GNU M44.

Named mental state transformers. The concept of a plain mst introduced modularity
into an agent program, however it does not allow an easy re-use of already defined
mst’s in different contexts of the agent program. The extension to a named mental state
transformer provides a means to re-use previously defined mst’s in different contexts of
an agent program. A label (handle) of a named mst serves as a placeholder for it. It is
expanded into a full-fledged code by a macro preprocessor.

Again, following the tiered approach, we first provide a syntactical specification fol-
lowed by a detailed translation of named mst into the denotational semantics of plain
mst. The syntax of the programming language is extended by the following EBNF:

<program> := <trans_def>* <transformer>
<trans_def> := "define" <identifier> <transformer>
<transformer> := <identifier>

<program> is again redefined, and the rest of the definition extends the previous
ones. <identifier> should be a unique label, distinct from the already introduced
keywords like query, update etc. A straightforward denotational semantics of the
extended definition of agent program in terms of simple mst’s follows.

Definition 11 (named mst: denotational semantics). A modified mst construct is de-
fined by adding the following to Definition 9: Let τ be a mst and label is a unique
identifier (<identifier>), then (label , τ) is a named mst definition.

5. If (label , τ ′) is a named mst definition and τ ′ is characterized by a partial function
F ′, then mst τ = {(label)} is characterized by F(σ, ψ) = F ′(σ, ψ) with the
application domain ΣF = ΣF ′ .

4 http://www.gnu.org/software/m4/

http://www.gnu.org/software/m4/

150 P. Novák and J. Dix

Note, that because the Definition 11 is an extension of the Definition 9 also mst of the
form φ −→ (label) is a well formed mst defined as a specialisation of mst (label) by
the query formula φ.

Now we provide a translation of the extended mst construct to the plain mst as de-
fined in Definition 9.

Definition 12 (expanded mst). Let L be a language of mental states, Γ be a set of
named mst definitions in L and τ be a mst. We define Exp(τ), the expansion operator:

Exp(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ if τ = {φ −→ ψ}, where φ ∈ LQ, ψ ∈ LU

{φ −→ Exp(τ ′)} if τ = {φ −→ τ ′}, τ ′ is not primitive and φ ∈ LQ⋃
τ ′∈τ Exp(τ ′) if τ is a union of several mst’s

Exp(τ ′) if τ = (label) and (label , τ ′) ∈ Γ

Now the expansion fixed point is as usual: Exp0 (τ) = τ , and Expi+1(τ) =
Exp(Expi (τ)). The expanded mst τe, corresponding to τ , is a fixed point of the Exp
operator. I.e. such a mst τe, for which ∃i ≥ 0, so that τe = Expi(τ) = Expi+1(τ).

The semantics of an agent program P = (Γ, τ) with a set of named mst definitions
Γ is that of the expanded mst τe corresponding to τ w.r.t. Γ .

The expansion operator Exp simply replaces all the labels by their corresponding con-
tent according to their definitions. For an agent program to expand correctly, each label,
used as a placeholder for a mst, has to be previously defined in the agent program P as
well. Recursive schemata of mst “calls” do not correctly expand into a simple program
without labels, because the fixed point w.r.t. Exp operator, does not exist for them. Re-
cursive applications of named mst’s in the agent program, if allowed, would also lead
to infinite query evaluation5.

Note also, that due to uniqueness of labels of named mst’s, there is at most one fixed
point of Exp operator for any program P = (Γ, τ). Obviously not all agent programs
with syntax extended to named mst’s have a semantics accroding to Exp expansion
operator. This might happen when the program uses recursive application of a named
mst, or when it uses a previously undefined mst w.r.t. given Γ .

Named queries, code templates and more. To conclude our tour through gradual
extensions of the core programming language, we finally sketch several simple exten-
sions, which further enrich the language and stand as an inspiration for implementation
of the language compiler.

As we already mentioned several times above, queries in transition rules can be seen
as mental state classifiers. It might be practical to re-use these classifiers in different
contexts and specialize them in different parts of an agent program. For that, we can
again use the macro expansion facility of the language compiler. A named query can be
viewed as an abbreviation for a complex query formula:

5 Except for external events, which we abstract from, a mental state cannot be changed unless an
update is performed. In turn, this cannot happen either, because the interpreter cannot properly
perform a query on it.

Adding Structure to Agent Programming Languages 151

<query_def> := "defineq" <identifier> "{" <queries> "}"
<query> := <identifier>

This definition again extends the definition of the core language syntax introduced in
Subsection 2.3. We assume unique query abbreviation identifiers. A formal definition of
named query expansion is similar to that of named mst: our comments w.r.t. recursive
application and the existence of fixed points of the expansion operator apply as well.

Many more trivial extensions based on macro expansion can be introduced. We only
briefly list some of those, which we believe contribute to improving the coding ex-
perience using a reactive rule based programming language, such as the one defined
here. Named updates, or definition of re-usable modules, consisting of several named
mst’s, with features resembling name spaces, will further enhance modularization of
an agent program. Parametrized macro definitions and their further extensions to syn-
tactical constructs resembling lambda-calculus of Lisp will lead to implementation of
re-usable code templates, similar to those of C++.

We conclude this section with an example sketching a part of an agent program using
some of the features above.

Example 3 (stock exchange cont.). Parametrized mst definitions allow us to reformu-
late and modify the code from Example 2 to implement specific strategy w.r.t. certain
stock title. Different variants of strategies for different stocks can be used in different
situations. Use of a named query definition further improves the code readability as
well.

define careful_strategy(TITLE) {
when [{ wants(TITLE) }] then [{ drop_goal(wants(TITLE)) }] ;

}
define opportunistic_strategy(TITLE) {

%% Adapted code from Example 1 %%
}
defineq market_turmoil {

[{ news(’overtake’)>2 }] and [{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]
}
. . .
when market_turmoil then {

careful_strategy(APPL);
careful_strategy(MSFT);

} else {
opportunistic_strategy(APPL);
opportunistic_strategy(MSFT);

}

The last rule clearly summarizes the meaning of the whole program in a very com-
pact and easily readable statement.

4 Discussion and Related Work

Reactive planning is an important paradigm that led to implementations using reac-
tive rules in languages like AgentSpeak(L) [16,2], 3APL [9,7], GOAL [8], or the one
introduced here.

152 P. Novák and J. Dix

Interpreters of these languages in every step select a rule and then execute it w.r.t.
semantics of the particular language. In general, in each cycle the interpreter consid-
ers a set of rules independently of the previously selected and executed rules (doing
some bookkeeping within the internal structure of agent’s mental state). The resulting
agent system is then able to flexibly react to events and exceptional situations without
reconsidering its previous actions.

However, designers of an agent oriented programming language face a very difficult
problem: Such a reactive architecture of an agent program clashes with the traditional
sequential and imperative view on the program code.

We argue, that the functional view on an agent program

1. can be appropriately represented by an abstraction called mental state transformer,
2. has a potential to become a basis for a powerful abstraction useful for conceptual

decomposition of an agent program into functionally encapsulated subunits (higher
level units "call" lower level ones, which allows structuring the agent program into
several conceptually separated layers), and

3. is particularly appropriate in the context of programming languages for agents with
mental states.

Instead of considering an agent program as a specification of all the paths along which
the agent system is allowed to evolve within its transition system, this abstraction shifts
the programming style to consider different contexts in which the agent might be in.
Each such context forms a subspace of the agent’s transition system and it might again
consist of a number of smaller subspaces, in each of which the agent performs a differ-
ent behaviour, i.e. different mental state update.

The concept of mental state transformer favours this subspace-nesting view on the
specification of an agent system by nesting queries of transition rules, finally result-
ing in a mental state update. In the previous sections, we tried to demonstrate how this
view can be used to conceptually decompose an agent program into functionally en-
capsulated subunits. We stress, that this work should be perceived more as a basis for
further development of strong abstractions for agent oriented programming, rather then
an ultimate solution of this problem.

Most probably, 3APL [9,7] is the rule based language which received the most at-
tention w.r.t. agent program modularity. Recent works by Dastani et. al. [6] and by van
Riemsdijk et. al. [18] introduce a semantically oriented modularity to 3APL. In [6] the
authors formalize a notion of role, grouping together beliefs, goals, plans and reasoning
rules of a BDI agent. A role can be enacted, or deacted at run-time. The whole process
is handled by 3APL’s deliberation cycle.

In [18], the authors introduce a concept of goal oriented modularity for 3APL. It
is based on decomposition of a set of practical reasoning rules of a BDI agent into
modules, according to goals they help to achieve. A module can be called within a rule
to achieve a subgoal in the context of a plan. When the subgoal is achieved, the control
returns back to the context from which the module was called. This resembles a stack of
routine calls in procedural languages. Implementation of both of these 3APL extensions
requires modification of 3APL’s semantics and the language interpreter.

Both role and goal oriented approaches to modularize an agent program are based on
particularities of the internal structure of agent’s mental state, namely BDI architecture.

Adding Structure to Agent Programming Languages 153

As our approach introduces a functional modularity, supported by purely syntactic ex-
tensions of the language, they can be seen as orthogonal to ours and, we believe, can
be combined. A combination of modularization of practical reasoning rules, based on
the abstraction of mst’s, within the role, or a goal oriented module, can lead to a finer
grained structuring of agent programs.

In [10] plan patterns for programming declarative goals in AgentSpeak(L) ([2]) are
introduced. While their approach is similar to ours in that it exploits a macro preproces-
sor as well, in [10] the authors describe use of this mechanism only for implementation
of code templates, similar to those we discuss in Subsection 3.2, for handling various
types of goals. In this paper, we propose a functional view of an agent program, em-
bodied in the concept of mental state transformer, which has an ambition to become a
basis for further development of code templates implementing also agent’s behaviours,
or roles.

Finally, according to our personal communication with Koen V. Hindriks, there’s an
ongoing work on policy based modularization of GOAL [8].

We are not aware of any work introducing source code modularity into declarative
approaches like e.g. MINERVA [11] and DALI [5]. These two languages exploit the
strengths of declarative logic programming and the semantics of both of them is closely
connected to logic program updates.

However, we believe that our approach can be adapted to introduce modularization in
these languages as well (however, this is not straightforward for MINERVA and DALI,
because their semantics is not just based on reactive rules).

A modularization based on the abstraction of capabilities was introduced in JACK
[4] and further extended in Jadex [3]. Capability, similarly to a role in 3APL, encap-
sulates related beliefs, goals, plans and events. However, as both of these systems can
be seen as extensions of Java, all the syntactically oriented modularity implemented in
Java applies to them as well. Since our approach is oriented towards modularization of
languages based on reactive rules, any direct comparison does not make sense.

IMPACT [17] and Modular BDI architecture [15] introduce a vertical modularity to
agent programming. The programming language in which a developer encodes how an
agent system should move from one mental state to another using updates, is in these
approaches independent of the internal structure of agent’s mental states. A program-
mer is free to choose a knowledge representation technique to employ and develop the
agent’s mental state representation in it. She can also agentize 3rd party legacy code
like e.g. mainstream database systems. These two approaches inspired the design of our
core programming language. It allowed us to study modularization of an agent program
independently of intricacies of the architecture of an agent’s mental state.

This paper is an attempt to engineer a practical syntax for the Modular BDI architec-
ture introduced previously in [15]. A more thorough discussion on applicability of our
approach to other agent oriented programming frameworks is given in [14].

5 Conclusion and Future Work

The contribution of this paper is an attempt to give an answer to the following question:

154 P. Novák and J. Dix

Given an (unstructured) agent language based mainly on reactive rules, how
can the syntax be extended so that important features allowing code re-use,
modularization and the like are available?

To this end we introduced a novel abstraction: the mental state transformer.
We did not yet touch the important issue of variables in our language. Using vari-

ables broadens our approach significantly and enhances its applicability. The problem
with allowing variables in the rules, is that the implementation of the notion of named
mst using macros is not sufficient any more. In such an extended language the name
scope of variables has to be considered, i.e. variables used in named mst, should be
local to that mst. A customized macro preprocessor, which handles local variables has
to be used in such a case. We are currently developing such preprocessor.

While we discussed in this paper only the theoretical basis, we are currently working
on an implementation of an interpreter-compiler stack for the programming language
similar to the one proposed here. We hope to refine some of the extensions of the lan-
guage using macro expansion and to experiment with the resulting language, in order to
put the abstraction of mst’s to a test. As the structural decomposition, introduced in this
paper, leads to a new programming style, it is necessary to prove the usefulness of the
presented language in practice by developing a non-trivial agent system application.

Finally we would like to thank several anonymous referees for their careful reading.
Their comments helped to improve this paper a lot.

References

1. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Programming
Languages, Platforms and Applications. In: Multiagent Systems, Artificial Societies, and
Simulated Organizations, vol. 15, Kluwer Academic Publishers, Dordrecht (2005)

2. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-Oriented Pro-
gramming. In: Multiagent Systems, Artificial Societies, and Simulated Organizations [1], ch.
1., vol. 15, pp. 3–37 (2005)

3. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept for Flexible
BDI Agent Modularization. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.
(eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 139–155. Springer, Heidelberg (2006)

4. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI Agents in Functional
Clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 277–289. Springer,
Heidelberg (2000)

5. Costantini, S., Tocchio, A.: A Logic Programming Language for Multi-agent Systems. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
1–13. Springer, Heidelberg (2002)

6. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F., Meyer, J.-J.C.: Enacting and deact-
ing roles in agent programming. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg (2005)

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.: Programming Multi-Agent Systems in 3APL.
In: Multiagent Systems, Artificial Societies, and Simulated Organizations [1], ch. 2, vol. 15
pp. 39–68, (2005)

8. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: Agent programming with
declarative goals. CoRR, cs.AI/0207008 (2002)

Adding Structure to Agent Programming Languages 155

9. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

10. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Programming declarative goals using plan pat-
terns. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327, pp. 123–140.
Springer, Heidelberg (2006)

11. Leite, J.A., Alferes, J.J., Pereira, L.M.: MINERVA - A Dynamic Logic Programming Agent
Architecture. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp.
141–157. Springer, Heidelberg (2002)

12. Meyer, B.: Introduction to the Theory of Programming Languages. Prentice-Hall, Englewood
Cliffs (1990)

13. Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.): 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-
12, 2006. ACM, New York (2006)

14. Novák, P., Dix, J.: Adding structure to agent programming languages. Technical Report IfI-
06-12, Clausthal University of Technology (2006)

15. Novák, P., Dix, J.: Modular BDI architecture. In: Nakashima et al [13], pp. 1009–1015.
16. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In:

Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

17. Subrahmanian, V.S., Bonatti, P.A., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heteroge-
nous Active Agents. MIT Press, Cambridge (2000)

18. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C., de Boer, F.S.: Goal-oriented modularity in
agent programming. In: Nakashima et al [13], pp. 1271–1278.

Modules as Policy-Based Intentions:

Modular Agent Programming in GOAL

Koen Hindriks

EEMCS, Delft University of Technology, Delft, The Netherlands
k.v.hindriks@tudelft.nl

Abstract. Modular programming has the usual benefits associated with
structured programming, information hiding and reusability, but also has
additional benefits to offer when applied in agent programming. We argue
that modules can be viewed as structures similar to that of policy-based
intentions [2]. Modules perceived in this way are components within an
agent that are triggered in a particular situation and combine the knowl-
edge and skills to adequately pursue the goals of the agent in that sit-
uation. The context that triggers the activation of a module defines the
interface of the module, which can be specified declaratively, in contrast
to the usual functional interpretations of such interfaces. A feature that
differentiates our notion of a module from plans is that modules provide
an agent with a means to focus its attention on the relevant resources it
needs to handle a situation. As a result, modules can be used to control
or reduce the underspecification and inherent non-determinism that is
typical of agent programs. In the paper, the proposed module concept is
incorporated into the agent language GOAL and illustrated by means of
a simple example.

1 Introduction

It has been argued by several authors that besides being able to decompose a
complex system into multiple agents it is also important to be able to decompose
single agents into structured units in agent programming languages. For vari-
ous reasons, it is not always appropriate to provide this additional structure by
decomposing a single agent into a group of yet smaller agents. An agent-based
decomposition introduces additional communication overhead and requires du-
plication of knowledge and goals in those agents. This has motivated the in-
troduction of modularization as a decomposition technique into various agent
programming frameworks (cf. [3,4,17]).

Apart from the traditional motivations for modularization, we argue that
there are also reasons more specifically related to rational agents for incorporat-
ing modules into agents. As in other programming paradigms, modularization
provides the usual benefits associated with structured programming, information
hiding, and reusuability.

In agent programming, modules support the encapsulation of domain knowl-
edge, basic actions and plans that are logically related and relevant for handling

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 156–171, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 157

particular situations. From a software engineering point of view, modules allow
a programmer to focus on those skills that are required to handle a situation.
As components of an agent program, modules can be viewed as specialized, ded-
icated units of control to realize particular goals of the agent. Modules in agent
programming are also called capabilities sometimes in the literature (cf. [3,4]).

The main focus of this paper is on the dynamic control that module execution
provides to a rational agent. As will be discussed below in more detail, modular
agent programming also provides additional benefits which are not traditionally
recognized or simply do not apply to other programming paradigms. One of the
most important of these is the fact that modules provide additional structure to
control the inherent non-determinism of agent programs. Agent programs typi-
cally do not specify for each situation that the agent may encounter a unique
course of action that the agent should execute. In particular, often actions in
parallel plans are interleaved non-deterministically, and various goal adoption
rules and plan rules may be selected for execution at any time. As a result,
agent programs in general underspecify the course of action that an agent takes.

This underspecification present in agent programs may result in suboptimal or
even irrational behavior of an agent. Since an agent is supposed to “do the right
thing”, various proposals have been made to provide an agent with additional
means to control the choices left open by the agent program. One particular
strand of research has focused on defining control structures to achieve this
objective. In the context of agent programming these are also called deliberation
cycles (cf. [5,14]). Another interesting proposal has been to use decision-theoretic
techniques (e.g. [1]). The proposal discussed in this paper is to use modules to
provide focus in the selection of actions of an agent. It is argued that the concept
of a module provides for a particularly flexible programming technique to reduce
the underspecification typically present in agent programs.

A further advantage of introducing modules in agent programming is that the
interface of a module can be provided with a natural and moreover completely
declarative definition. This is a distinguishing feature of the module concept
presented in this paper. Typically, the interface of a module that implements the
information hiding is based on an explicit importing and exporting mechanism
which is not declarative. As a result, such module interfaces do not provide a
declarative specification of what they can be used for but instead only specify
an accessibility mechanism that determines what is “visible” to the environment
of the module. A declarative concept of module interfaces as proposed here,
however, allows a programmer to read of the module’s intended use from its
interface without any additional inspection of the implementation details inside
a module. The idea is that a declarative interface specifies in what circumstances
a module can usefully be activated.

The declarative nature of module interfaces differentiates our proposal from
those that are inspired by Prolog and Object Oriented concepts of modules
such as [3,4] and is closer in spirit to the logic-based approach in [12]. In line
with our conception of a module being specialized in handling specific situations

158 K. Hindriks

it is natural to define a module interface as a condition that identifies that
situation. The declarative interface of an agent module specifies which situations
a module can handle well because it is designed to do just that. The internal
structure of a module specifies how the situation specified by the interface is
to be handled: it encapsulates the basic actions, knowledge, and plans that the
agent needs to handle the situation, given its current goals.

This view of modules in agent programming provides for a natural and intu-
itive separation of concerns. On the one hand, the encapsulation of basic actions,
domain knowledge and plans in a module facilitates the programmer in combin-
ing all relevant knowledge and skills that are needed to handle a particular
situation. On the other hand, the declarative specification of a module interface
entails that it can be defined more or less independently from other parts of the
program: A module only has to provide a kind of plan to handle the situation
as specified by the interface.

This concept of a module that focuses the attention of an agent in order to han-
dle the situation at hand is incorporated in this paper in the agent programming
language GOAL. Due to the additional structure that modules provide, the in-
corporation of modules into GOAL can also be viewed as an extension that makes
available a structure similar to a policy or plan in GOAL. The paper is organized as
follows. First, a brief overview of the GOAL programming language is presented.
In section 3 GOAL is extended with modules. The semantics of modules is in-
formally motivated and formally specified by providing an operational semantics.
Section 4 compares with related work and concludes the paper.

2 The GOAL Language

GOAL, for Goal-Oriented Agent Language, is an agent programming language
that incorporates declarative notions of beliefs and goals, and a mechanism for
action selection based on these notions. That is, GOAL agents derive their choice
of action from their beliefs and goals. For a detailed overview and discussion of
the language see [7,10]. An example of an (incomplete) GOAL agent program
that will be used throughout the paper for illustrative purposes is provided in
Figure 1. This agent provides a specification for a delivery agent that delivers
parcels to various clients. A GOAL agent program consists of four sections: (1)
a set of initial beliefs, collectively called the (initial) belief base of the agent,
(2) a set of initial goals, called the (initial) goal base, (3) a program section
which consists of a set of conditional actions, and (4) an action specification
that consists of a specification of the pre- and post-conditions of basic actions
of the agent. To avoid confusion of the program section with the agent program
itself, from now on, the agent program will simply be called agent. The term
agent will be used both to refer to the program text itself as well as to the
execution of such a program. It should be clear from the context which of the
two senses is intended.

The program and action specification components of a GOAL agent are static
and do not change at runtime. The agent’s belief and goal bases are dynamic

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 159

:main:deliveryAgent
{

:beliefs{ home(a).
loc(p1,a). loc(p2,a). loc(p3,a). loc(p4,a). loc(truck,a).
loc(c1,b). loc(c2,c). order(c1,[p1,p2]). order(c2,[p3,p4]).
ordered(C,P) :- order(C,Y), member(P,Y).
loaded order(C) :- order(C,O), loaded(O).
delivered order(C) :- order(C,O), loc(C,X), loc(O,X), loc(truck,a).
packed :- setOf(P,in(P,truck),L), size(L,2).
empty :- setOf(P,in(P,truck),[]).

}
:goals{ delivered order(c1). delivered order(c2). ... }
:program{

if goal(delivered order(C)), bel(ordered(C,P)),∼bel(in(P,truck))
then load(P).

if goal(delivered order(C)),
bel(loc(truck,X), loaded order(C), loc(C,Y)) then goto(Y).

if goal(delivered order(C)), bel(loc(truck,X), loc(C,X),
in(P,truck), ordered(C,P)) then unload(P).

if bel(loc(C, X), empty, home(Y)) then goto(Y).
if bel(ordered(C,P), empty),∼bel(in(P,a)) then adopt(in(P,a)).
...

}
:action-spec{
load(P){

:pre{∼packed, loc(truck,X), loc(P,X)}
:post{in(P,truck), ∼loc(P,X)} }

goto(Y){
:pre{loc(truck,X), X�=Y}
:post{loc(truck,Y), ∼loc(truck,X)} }

...
}

}

Fig. 1. Example of a GOAL agent program

and may vary over time. They change because of actions that are performed
by the agent, which, apart from changing the agent’s environment, also update
and modify the beliefs and, indirectly, the agent’s goals. Belief bases are typically
denoted by Σ and goal bases by Γ . Together, the belief and goal base pair 〈Σ, Γ 〉
are called the mental state of the agent, typically denoted by s. The language
GOAL does not fix the representation of beliefs nor goals, but here we assume
they are sentences from a first-order language, which in practice are suitably
restricted to allow for an efficient implementation. Mental states are required to
satisfy the following rationality constraints (|= denotes first-order entailment):

(i) Belief bases are consistent: Σ �|= false,
(ii) Individual goals are consistent: ∀γ ∈ Γ : �|= ¬γ,
(iii) Goals are not believed to be achieved: ∀γ ∈ Γ : Σ �|= γ.

160 K. Hindriks

The beliefs of the agent in Figure 1 consist of facts about the current situation,
in this case about parcel locations and clients and their orders, and a number
of rules that represent the logical relations between these facts. For example,
the rule for delivered_order(C) states that an order is delivered if all ordered
parcels have been delivered at the client’s site location and the truck is (back)
at its home base a. (Due to space limitations, definitions of the loc and loaded
predicates for lists and the unload action specification are not included, but
the intended meaning should be clear. setOf is a standard Prolog predicate that
returns a list of items satisfying the condition of its second argument.) Note that
the example agent does not believe that it delivered an order and thus initially
satisfies the constraint that goals are not believed by the agent.

The conditional actions in the program section of a GOAL agent define a
mapping from states to actions, together specifying a non-deterministic policy
or course of action. The condition of a conditional action is called a mental
state condition. It determines the states in which the conditional action may be
executed. Mental state conditions are boolean combinations of basic formulas
bel(φ) or goal(φ) with φ a first-order formula. A prolog-like notation is used in
examples, as in Figure 1: Literals in a conjunction are separated by means of a
comma, and negation is written as ∼. (In the main text, however, we also use ¬
and ∧ to denote negation and conjunction.) These conditions allow an agent to
inspect its beliefs and goals. For example, in the program section of the agent in
Figure 1, the first conjunct of the first condition, goal(delivered_order(C)),
inspects the goal base and verifies whether the agent has a goal to deliver for
some client C, and the second conjunct bel(ordered(C,P)) inspects the belief
base and verifies whether client C ordered a parcel P. Free variables in mental
state conditions are instantiated when the condition is evaluated at runtime.

Since mental state conditions need not be exclusive, multiple conditional
actions may be simultaneously enabled. GOAL agents thus may underspecify
the behavior of the agent resulting in a non-deterministic choice of action. In
Figure 1, initially the first conditional action is enabled for each of the four
parcels listed and the agent may load any of these parcels into the truck by ex-
ecuting a corresponding instantiation of the action load(P). In such a case, the
agent may non-deterministically choose any one of these actions for execution.

The fact that agents may be underspecified may provide benefits at design
time, but it may also pose problems at runtime. In the example, the agent is
supposed to deliver orders to various clients. In order to do so, the agent first
needs to load the truck with the ordered items. However, since the agent has
multiple orders to deal with and no priority on handling these orders has been
specified, the agent may end up loading parcels into the truck that do not belong
together. Since the load the truck can carry is also very limited, as a result, the
agent may end up delivering no orders at all and end up in a deadlock situation.
(Of course, a slightly smarter agent would start unloading parcels again, but
this would not guarantee resolution of the problem. Other ways to resolve the
problem in a principled way seem to require significant modification of the agent.)
Note that in case the agent would have had only a single delivery goal to deal

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 161

with, there would have been no problem, indicating that the example delivery
agent is not an incorrect implementation per se. With the appropriate focus, the
agent would have been able to deliver successfully. To provide agents with such
focus is one of our motivations for introducing modules. Modules are introduced
to provide a means to control the non-determinism inherent in agents and to
provide agents with a focus of attention on some of their goals among the many
others that they may have.

3 Modules as Policy-Based Intentions

In this section the use of modules conceived as policy-based intentions is illus-
trated using the example introduced in the previous section and the informal
discussion of modules is complemented with a precise definition of the opera-
tional semantics of modules by means of a transition system (cf. [13]).

The concept of a module that is introduced here is inspired by the the concept
of a policy-based intention in [2] and motivated by the fact that modules so viewed
can be identified with plans or policies that guide the agent’s action. Policy-based
intentions are general policies and concern potentially recurring circumstances
in the agent’s life. Such policies shape an agent’s plans in ways that may help
achieve a range of different and potentially conflicting goals. They do so by
providing a partial solution to the problems posed by the limited resources for
deliberation by making a previously successfully tested strategy readily available
to the agent. Policy-based intentions may be particular to an agent, coding the
specific ways in which that agent typically handles a recurring circumstance.

Our notion of module incorporates the main ideas of such policy-based in-
tentions. In particular, it incorporates the notion of a circumstance-triggered
intention and a notion of commitment to executing the intention. A module
viewed as a policy-based intention specifies these circumstances as a condition
for activating the module. A module, additionally, can be used to structure and
combine the relevant knowledge and skills needed to handle such circumstances
in ways that help achieve the agent’s goals. Modules do not only describe the
capabilities that an agent has, but specify a policy or plan that an agent applies
in particular situations to handle that situation.

The GOAL language allows for an elegant definition of modules that are
circumstance-triggered, general policies for acting. Syntactically, GOAL modules
are just GOAL agents with an additional context section. A module also has a
name, which serves as a bookkeeping device and facilitates easy reference. An
example GOAL agent with two modules named deliverOrder and stockMngt is
provided in Figure 2. The example is a modified version of the agent in Figure 1
in which most of the program text has been placed inside the modules except for
the facts in the belief base and the initial goals in the goal base (the ... refer
to missing parts, which can be filled in partially by copying text from Figure 1).
The context and program section of a module must be non-empty, but the belief
and goal sections may be empty. Empty module sections can simply be left out,
e.g. in our example the goals section of the first module might have been left out.

162 K. Hindriks

For ease of reference, below we write m.section to refer to each of the different
sections of a module named m. For example, deliverOrder.context refers to
the context section of module deliverOrder.

Module Activation. Intuitively, a module is specialized in handling the situa-
tions that are specified by the context section. The context section of a module,
which may be any mental state condition, determines its activation condition: A
module may be activated when its context section is true. For example, the con-
text section in Figure 2 of the module deliverOrder specifies that the module
is specialized in achieving an instance of the goal deliver_order(C). Context
sections may also include conditions on the beliefs of an agent, to indicate in
which circumstances a module may be used to achieve a goal, for example, a
precondition for activating the deliverOrder module is that the ordered items
are in stock. Note that context sections thus allow to define preconditions for
executing composed activities, i.e. plans or polices, that are specified in the pro-
gram section of a module. A module with a context section that consists of belief
conditions only such as the stockMngt module is called a reactive module.

In order to present the formal operational semantics below a precise definition
of the semantics of mental state conditions is required. A mental state condition
is evaluated in a mental state 〈Σ, Γ 〉. We overload the first-order entailment |=
and also use it to denote the truth conditions of mental state conditions.

Definition 1 (Mental State Condition Semantics)
The truth conditions for (closed) mental state formula, relative to a mental state
s = 〈Σ, Γ 〉, are defined by the following four clauses:

s |= bel(φ) iff Σ |= φ,
s |= goal(φ) iff there is a γ ∈ Γ s.t. γ |= φ and Σ �|= φ,
s |= ¬ϕ iff s �|= ϕ,
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.

Like any mental state condition, a context ϕ may have free variables, denoted
by free(ϕ). Any free variables that occur in other sections of a module, with the
exception of the program section, should also occur in the context section. (In
the example agents, rules are assumed to be implicitly universally quantified.)
Variables are instantiated at runtime when a module is activated. A module
is instantiated when all its free variables have been instantiated. Formally, an
instantiation of a module with free variables var in its context section is a sub-
stitution ρ such that dom(ρ) = var and the range of ρ is a set of constants or
closed terms. The application of a substitution ρ to a formula ϕ is written as
usual as ϕρ. The composition of two substitutions ρ1 and ρ2 is written as ρ1 ◦ρ2.

The activation of a module requires that various items are recorded to facil-
itate a proper definition of the operational semantics, e.g. that module m has
been activated, with what values ρ the free variables in the context of module
m have been instantiated, and which goals are actively pursued. To this end,
the notion of a configuration which extends a mental state with these items is
introduced. Note that the static parts of a module, i.e. the domain knowledge,

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 163

:main:deliveryAgent
{

:beliefs{ home(a).
loc(p1,a). loc(p2,a). loc(p3,a). loc(p4,a). loc(truck,a).
loc(c1,b). loc(c2,c). order(c1,[p1,p2]). order(c2,[p3,p4]).

}
:goals{ delivered order(c1). delivered order(c2). ... }
:program{ ... }
:action-spec{ ... }
:module:deliverOrder{
:context{ bel(order(C,O), in(O,a)), goal(delivered order(C)) }
:beliefs{
ordered(C,P) :- order(C,Y), member(P,Y).
...

}
:goals{ }
:program{

if bel(ordered(C, P)), ∼bel(in(P, truck)) then load(P).
if bel(loc(truck, X), loaded order(C), loc(C, Y)) then goto(Y).
if bel(loc(truck,X), loc(C,X), in(P,truck), ordered(C,P))

then unload(P).
if bel(loc(C, X), empty, home(Y)) then goto(Y).

}
:action-spec{ ... }

}
:module:stockMngt{
:context{ bel(ordered(C,P), empty), ∼bel(in(P,a)) }
:goals{ in(P,a) }
:program{ ... }
:action-spec{ ... }

}
...
}

Fig. 2. Example of GOAL Agent with Modules

conditional actions in the program section, and the action specification need not
be explicitly represented in a configuration. They can be retrieved when needed
from the module and instantiated appropriately by applying the substitution
which is recorded in a configuration. We write 〈m, ρ, Γm, 〈Σ, Γ 〉〉 to represent a
configuration in which a module m has been activated in a mental state 〈Σ, Γ 〉,
where Γm represents the associated set of goals handled by the module.

A module may be activated while another module has been activated. A con-
figuration thus may consist of a stack of modules and in that case a more recently
activated module is executed within the context of a previously activated mod-
ule. For example, it may be that the former is activated because of additional
subgoals or domain knowledge introduced by the latter module. It may also be

164 K. Hindriks

the case, however, that a module is activated because of changes of the beliefs in
the agent’s belief base as e.g. the stockMngt module in the example. To allow for
activation of a module when other modules have been activated and not yet ter-
minated, we also write 〈m1, ρm1 , Γm1 , . . . , 〈mn, ρmn , Γmn , 〈Σ, Γ 〉〉 . . .〉 to indicate
that module m1 has been activated after modules mn to m2 (in that order) have
been activated. We say that a ρ-instantiation of module m has been activated if
the module name together with the substitution ρ occurs in the configuration
〈m1, ρm1 , Γm1 , . . . , 〈mn, ρmn , Γmn , 〈Σ, Γ 〉〉 . . .〉. Moreover, only the most recently
activated module is called active.

The belief section of a module can be used to specify relevant domain knowl-
edge for handling a situation. There is no restriction on the formulas allowed in
the belief section of a module; it may contain both facts as well as rules, just like
the belief base of the agent. When more than one module has been activated,
we need to ensure that the domain knowledge of each activated module can be
accessed by the agent. Each module is activated within a particular context and
the information about this context, represented by the domain knowledge of
previously activated modules, should still be available to the agent. To this end,
we define the notion of accessible beliefs in configuration v as the set Σaccessible

of the beliefs Σ combined with the domain knowledge (mi.beliefs)ρi of each ac-
tivated module mi, where any free variables have been instantiated by applying
the substitution ρi. The accessible domain knowledge of all activated, properly
instantiated modules is also denoted by Σdomain. Σdomain denotes all beliefs
of all modules except for those in the global belief base Σ and we have that
Σdomain ⊆ Σaccessible.

In the goal section of a module additional subgoals may be introduced for
structuring the problem that needs to be dealt with, as is done e.g. in the
stockMngt module. These goals are goals local to the module and are only
pursued while the module is activated. Subgoals introduced by a module may
trigger other modules again to achieve these subgoals.

Modules provide more focus by restricting the set of goals that the agent
actively pursues. In our simple example agent, the module deliverOrder serves
to provide a focus of attention on one of the delivery goals of the agent and to
temporarily disregard any other goals that the agent may have. Upon activation
of that module, the context is instantiated with either client c1 or client c2.
Assuming that c1 is used, the set of active goals is restricted to the goal of
delivering an order for c1 and the goal of delivering for c2 becomes passive. This
provides the agent with the relevant focus to complete a delivery for a single
client. The actions in a module thus will only be directed at achieving that goal
and potential conflicts due to other goals are avoided.

Formally, the notion of active goals in configuration v is defined as the set
of goals associated with the most recently activated module, i.e. Γactive = Γm1

where m1 denotes that module. (Note that in this case no substitutions need
to be applied since the goals in Γm1 have already been instantiated.) All other
goals are called passive and the set of these goals can be defined as Γpassive =
Γ ∪ Γm2 ∪ . . . ∪ Γmn where Γ denotes the top-level goals of the agent and the

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 165

Γmi denote the goals introduced and processed by previously activated modules
mi. Finally, Γall = Γactive ∪ Γpassive, i.e. Γall is the set of all current goals.

When a module is activated, a filter is applied to the then active set of goals to
select only those that triggered the activation. As a result, the agent will focus on
those goals that entail the context of the module given the currently accessible
beliefs. Informally, only those goals that the agent has adopted and make the
context condition of the module true are considered after activation of that
module in combination with those introduced by the module’s goal section. The
set of active goals is computed from the context section and the goal section.
A context condition ϕ can be converted into disjunctive normal form, taking
formulas of the form bel(φ) and goal(φ) as atoms. An occurrence of an atom of
the form bel(φ) or goal(φ) is called a positive literal if it occurs unnegated in the
normal form, otherwise it is called a negative literal. Assuming that a context
condition ϕ is in disjunctive normal form, the function filter(ϕ) extracts all
positive literals of the form goal(φ) from ϕ and removes the goal operator goal.
For example, if ϕ = [bel(p) ∧ goal(q)] ∨ [goal(r) ∧ ¬goal(p)], then filter(ϕ) =
{q, r}. The focus of attention then is defined as those filtered atoms that are
also currently active goals of the agent by the function focus(ϕ, s) = {φ ∈
filter(ϕ) | s |= goal(φ)}, where s is a state defined by the accessible beliefs and
active goals.

Definition 2 (Module Activation Rule)
Let v = 〈m1, ρm1 , Γm1 , . . . 〈Σ, Γ 〉 . . .〉 be a configuration (possibly without module
instantiations, i.e. v = 〈Σ, Γ 〉), m be a module, and ρ be a substitution such that
dom(ρ) = free(m.context). Then the activation of module m is defined by:

〈Σaccessible, Γactive〉 |= (m.context)ρ
no ρ-instantiation of module m has been activated yet

v −→ 〈m, ρ, focus((m.context)ρ, 〈Σaccessible, Γactive〉) ∪ (m.goals)ρ, v〉

The second condition in the rule avoids that the same instantiation of a module
is activated twice. The activation of a module does not change the beliefs or goals
in the mental state of the initial configuration v. Implicitly, however, the set of
accessible beliefs Σaccessible is extended with the instantiated domain knowledge
in the belief section (if any) of the module. Module activation also changes the
set of active goals Γactive to the set of goals that result from filtering the context
of the module and computing the corresponding focus of attention combined
with goals that result from instantiating the goal section of the module. As
a consequence, other modules are only activated when they are relevant for
achieving an active goal (with the exception possibly of reactive modules).

Action Execution. Once a module is activated execution is restricted to ac-
tions from the module’s program section. This is a second way to structure and
focus the behavior of an agent. For example, by excluding the first conditional
action for adopting a goal to replenish stock from the module in Figure 2, any
potential interference of actions to achieve this goal with the actions for deliver-
ing the ordered parcels is prevented. All actions that are relevant for delivering

166 K. Hindriks

an order are combined in the module which in this way facilitates the specifica-
tion of a general policy for achieving this goal. In the deliverOrder module the
program section specifies that the context of the module is handled by loading
the truck with the items the client ordered, going to the client site, unloading
the ordered items, and returning to home base.

In order to define the semantics of action execution, a transition function
T is assumed to be given that captures the semantics of basic actions a and
is consistent with all the action specification sections (including those within
modules). Action specifications, moreover, are required to be consistent with
the domain knowledge stored in a module. That is, since it is assumed that
such knowledge does not change during the lifetime of an agent, an action is
not allowed to update this knowledge to avoid inconsistencies when a module is
activated. While in principle such beliefs can be added to the (global) belief base
Σ, encapsulating such knowledge in a module facilitates information hiding and
efficient execution. In the example agent of Figure 2 the rule for the predicate
ordered is used to represent fixed domain knowledge about the relation between
individual ordered items and the order of a client. Formally, this means that the
transition function should be defined in such a way that actions never update
knowledge stored in a module.

Constraint 1 (Domain Knowledge Not Updated)
If a belief section in a module consists of a set of formulas D, then for any belief
base Σ and action a (including skip, i.e. the action without any effects) it must
be the case that T (a, Σ ∪ D) = Σ′ ∪ D, such that Σ′ ∪ D is consistent.

Since the skip action does not change the configuration of an agent, it follows
that T (skip, Σ∪D) = Σ∪D must be consistent, which implies in particular that
the domain knowledge present in the various modules of an agent also should be
consistent with the initial beliefs of an agent.

An important aspect of modules concerns the encapsulation of the effects of
belief updates and goal updates. It is argued here that the beliefs in the mental
state of an agent (in contrast with the domain knowledge stored in modules),
and any updates on these beliefs, should not be encapsulated in a module. This
would make these beliefs “invisible” to other modules. The effects on the agent’s
environment caused by executing a module, should be available for later reference
and therefore incorporated into the agent’s belief base. For example, the updated
locations of parcels need to be stored in the belief base of the example agent.

It has already been argued that goals of an agent should be local to a module
in order to provide an agent with a focus on the goals relevant in a particular
situation. But even though the agent’s focus is on achieving the active goals by
selecting appropriate actions, whenever either an active or passive goal has been
achieved such a goal is updated and removed from the set of all adopted goals.
It is considered irrational for an agent to invest any more time and resources in
a goal that has already been achieved.

The previous discussion is formally captured in the action execution rule for
modules. The rule restricts the choice of action to those that are available within

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 167

the program section of the most recently activated module. Modules thus may
create focus and prevent unexpected or undesirable interference effects of other
actions.

Definition 3 (Action Execution Rule: Modules)
Let v = 〈m1, ρm1 , Γm1 , . . . 〈Σ, Γ 〉 . . .〉 be a configuration, c be a conditional action
of the form if ϕ then a(t) in the program section of module m1, ρ a substitu-
tion with dom(ρ) = free(ϕρm1), and σ = ρm1 ◦ ρ. Then the execution of the
conditional action c is defined by:

〈Σaccessible, Γactive〉 |= ϕσ and Γactive �= ∅
v −→ 〈m1, ρm1 , Γ

′
m1

, . . . 〈Σ′, Γ ′〉 . . .〉

where:

– Σ′ = T (a(t)σ, Σaccessible) \ Σdomain,
– Γ ′

(i) = Γ(i) \ {ψ ∈ Γ(i) | T (a(t)σ, Σaccessible) |= ψ}, where Γ(i) denotes any
of the sets Γi or the goal base Γ .

Note that only the global beliefs in the belief base Σ of the agent’s mental state
are updated when an action is performed. The accessible domain knowledge
stored in modules is not updated (and excluded from the result of applying
the transition function to the set of all accessible beliefs). The definition of the
updated beliefs Σ′ based on the transition function T is correct provided that
the constraint on updating knowledge stored in modules holds (cf. constraint 1).

Execution at the top-level (i.e. when no modules have been activated) is de-
fined exactly the same as that for GOAL without modules (cf. [7]). In fact, it
is a special case of the action execution rule for modules below since a GOAL
agent can be viewed as a module without a context section.

Goal Update Actions. The action execution rule is not applicable to the goal
update actions but only to basic actions a(t). Different rules are needed for the
goal update actions drop and adopt. Only the rule for adopt(φ) is provided
here. The rule for drop can be derived from the rule provided in [7] and the
action execution rule above. A drop(φ) action does not have any effect on the
beliefs of an agent and simply removes all goals from the total set of goals which
imply that φ is a (sub)goal of the agent, i.e. all active as well as passive goals
that imply that φ is a (sub)goal of the agent are removed from the goal sets Γm

in a configuration v, and from the top-level goal base Γ .
The rule for executing an adopt(φ) action requires the agent to check whether

it is reasonable to add the goal φ, properly instantiated, to the set of adopted
goals within the current context. A weak condition is used to verify whether
adopting φ is reasonable: φ may be adopted if it is consistent and is not currently
implied by any of the accessible beliefs of the agent. It is not required that φ is
consistent with the domain knowledge of the agent, in order to avoid unnecessary
complications. It is left to the programmer to verify that such consistency will
always be maintained. The goal φ that is adopted is added to the set of active

168 K. Hindriks

goals associated with the most recently activated module. The motivation for
this is that newly adopted goals are only valid within the context of that module.

Definition 4 (Execution Rule for adopt: Modules)
Let v = 〈m, ρm, Γm, . . . 〈Σ, Γ 〉 . . .〉 be a configuration, c be a conditional action
of the form if ϕ then adopt(ψ), ρ be a substitution with dom(ρ) = free(ϕρm),
and σ = ρm ◦ ρ. Then the adoption of a goal φ is defined by:

〈Σaccessible, Γactive〉 |= ϕσ and Γactive �= ∅,
Σaccessible �|= ψσ, �|= ¬ψσ

v −→ 〈m, ρm, Γm ∪ {ψσ}, . . . 〈Σ, Γ 〉 . . .〉

Module Termination: Intuitively, a module is terminated when its associated
active goals are achieved. Upon module termination the module’s name is re-
moved from the stack along with the associated substitution and the (in this case
empty) set of active goals related to the module. A module thus implements a
commitment to the goals introduced by the module which can only be overrid-
den by dropping goals using a drop action that is available within the module’s
program section.

Incidentally, this commitment of a module to achieving the associated goals
also explains why the goal condition goal(delivered_order(C)) in the mental
state conditions of the conditional actions that were present in Figure 1 can
be removed when they are placed inside the module: It may be assumed that
this condition holds when the module is active, since the module itself does
not introduce any new goals and because the appropriate instantiations for the
variable C are used while the module is being executed (cf. also Definition 2
which introduces a substitution ρ to record variable instantiations).

The module deliverOrder of the example agent of Figure 2 is terminated
after loading the truck with ordered items for a specific client, going to the client’s
site, unloading the ordered items at that location, and returning to home base.
This achieves the goal condition of the context goal(delivered_order(C))
since in that case the agent will believe that it delivered the order and a goal
that is believed to be achieved is removed from the agent’s goal base (cf. also
Definition 2). At that moment, the context condition of the module no longer
holds and the module is automatically terminated.

Definition 5 (Module Termination Rule)
Let v = 〈m, ρm, Γm, 〈m1, ρm1 , Γm1 , . . . 〈Σ, Γ 〉 . . .〉〉 be a configuration, which con-
tains at least one module instantiation and a set of active goals Γactive = Γm.
Then the rule for termination of the most recently activated module m is defined
by:

Γactive = ∅
v −→ 〈m1, ρm1 , Γm1 , . . . 〈Σ, Γ 〉 . . .〉

After terminating the deliverOrder module, our example agent will resume
execution at the top-level and may reenter the module to process another delivery
order.

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 169

4 Conclusion

There are similarities between GOAL modules and plans in other agent pro-
gramming languages (e.g. [6,8,15]). The plans referred to are typically part of
a plan library that an agent is provided with during design. Both modules as
well as such plans specify a condition called the context of the module or plan.
Such context conditions specify the situation in which the module or plan can
be put to good use. This context may in both cases also be used to bind vari-
ables through a substitution mechanism that instantiates variables in a module
or plan body.

However, a 3APL [6] or AgentSpeak agent [15] that would implement our
example agent, it seems, would have to face the same problem of dealing with
the multiple goals for delivering orders. Typically, such agent programs trigger
plans for achieving declarative goals and in the example discussed multiple plans
would be introduced into the agent’s plan base. As a result, similar interference
effects are to be expected. The difference between GOAL modules and plans
resides in the execution of a module and of a plan taken from a plan library.
Once activated, a module becomes the focus of execution whereas a plan instead
is added to the plan base of an agent and just is one of the current, “active”
plans that an agent tries to complete.

The approach to incorporate modularization presented in [17] introduces an
operator m(φ) that is applied to goals φ that is also motivated to control non-
determinism. This operator may also be used to resolve the problem of our exam-
ple agent. In contrast with the context sections of GOAL modules, however, this
operator introduces a non-declarative mechanism for activating modules. Also,
whereas the termination condition of GOAL modules is based on a commitment
strategy that pursues goals until achieved, the termination of the modules in
[17] is based on a strategy to try various plans once and in case of failure to
quit. Moreover, in order to activate more than one module, calls to such mod-
ules need to be explicitly incorporated as steps in a plan. GOAL modules are
not called by other modules nor by the agent’s plans during run-time, but are
circumstance-triggered and focus the attention of the agent on the situation for
which the module provides a policy. In this sense, our notion of a module is
similar to the notion of a policy-based intention in [2].

In this paper, several benefits of using modules in agent programming have
been identified. In particular it has been argued that modules provide an elegant
solution to focus the execution of an agent. Modules restrict both the goals that
an agent takes into consideration in a given context as well as the conditional
actions that the agent needs to choose from. Modules therefore can be used
to reduce the inherent non-determinism present in agent programs. They also
provide a tool to structure the flow of control in an agent.

Our module concept is related in various ways to other concepts presented
in e.g. [3,4,11,12]. It shares with [12] the idea of relating modules to particular
contexts. The idea of a “capability filter” in [11] to constrain adoption of goals is
somewhat similar to our notion of a module acting as a context that filters out
the active goals. Finally, it shares with [3,4] the idea of combining the relevant

170 K. Hindriks

knowledge and skills (actions, plans) to achieve the agent’s goals into a module.
The main difference with the latter work is that it is based on events that
trigger activation of a module. Although an event-based trigger may be used to
realize similar behavior by means of a module encapsulating beliefs and goals
of an agent, the purely declarative module interface proposed in this paper may
provide a more expressive and explicit means to define the activation conditions
of a module. As illustrated in this paper, it is for example quite easy to specify
a precondition for activating a module given that specific goals are also present.
Moreover, one of the contributions of this paper is that it provides a formal
semantics of such module activation and execution.

Interestingly, modular approaches have also been investigated in the context
of cognitive architectures, e.g. in SOAR [18]. A mechanism for context switching
based on the fact that assumptions associated with modules, or problem spaces
as they are called in SOAR, do not hold anymore is proposed in [18]. Although
interesting, it is not quite clear how to incorporate such a mechanism into GOAL
modules. An alternative could be to incorporate maintance goals in modules and
use these as triggers for terminating a module.

Another related idea is to investigate how decision-theoretic notions can be
combined with the module concept introduced here. Although GOAL modules
provide a tool to qualitatively focus attention on a goal, they do not allow for the
consideration of quantitative utilities that indicate preference over such goals.
Adding utilities would not provide an agent with a focus on its goals per se,
but adding utility-based preferences to GOAL modules may be useful in order
to allow preference-based activation of modules as well as to allow an agent to
compute optimal ways to execute the plan or policy coded in a module (cf. [1]).
Another approach to deal with goal order might be to incorporate mechanisms
that are able to deal with goal interference such as [16].

There are several other ideas for future research related to the proposal to
view modules as policy-based intentions. In particular, one of the characteristics
of such intentions is their defeasibility (cf. also [9]). In certain circumstances,
the formation of such intentions (in the terminology introduced here, an active
module) derived from generic policies (coded as modules here) are blocked. An-
other interesting aspect of policy-based intentions is time-related. The modules
proposed and incorporated into GOAL do not allow to distinguish between the
time of adoption of such an intention and the time of execution nor for a notion
of deadline. It remains for future work to investigate how such extensions can
be integrated into GOAL.

References

1. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-Theoretic, High-level
Agent Programming in the Situation Calculus. In: Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000), pp. 355–362 (2000)

2. Bratman, M.E.: Intentions, Plans, and Practical Reasoning. Harvard University
Press, Cambridge (1987)

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL 171

3. Lamersdorf, W., Braubach, L., Pokahr, A.: Extending the Capability Concept
for Flexible BDI Agent Modularization. In: Bordini, R.H., Dastani, M., Dix, J.,
Seghrouchni, A.E.F. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 139–155.
Springer, Heidelberg (2006)

4. Busetta, P., Howden, N., Ronnquist, R., Hodgson, A.: Structuring BDI Agents in
Functional Clusters. In: Jennings, N., Lesperance, Y. (eds.) Intelligent Agents VI:
Theories, Architectures and Languages, pp. 277–289 (2000)

5. Dastani, M., de Boer, F., Dignum, F., Meyer, J.-J.C.: Programming Agent De-
liberation: An Approach Illustrated Using the 3APL Language. In: Proceedings of
The Second Conference on Autonomous Agents and Multi-agent Systems (AAMAS
2003), pp. 97–104 (2003)

6. Dastani, M.M., van Riemsdijk, M.B., Dignum, F.P.M., Ch, J.-J.: A Programming
Language for Cognitive Agents: Goal-Directed 3APL. In: Dastani, M., Dix, J., El
Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–
130. Springer, Heidelberg (2004)

7. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A Verification
Framework for Agent Programming with Declarative Goals. Journal of Applied
Logic (2006) (In Press)

8. Georgeff, M.P., Lansky, A.L.: Reactive Reasoning and Planning. In: Proceedings of
the Sixth National Conference on Artificial Intelligence, pp. 677–682. MIT Press,
Cambridge (1987)

9. Governatori, G., Padmanabhan, V.: A defeasible logic of policy-based intention. In:
Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 414–426.
Springer, Heidelberg (2003)

10. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Program-
ming with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

11. Padgham, L., Lambrix, P.: Formalisations of Capabilities for BDI-Agents. Au-
tonomous Agents and Multi-Agent Systems 10, 249–271 (2005)

12. Parsons, S., Jennings, N.R., Sabater, J., Sierra, C.: Agent Specification Using
Multi-Context Systems. In: Foundation and Applications of Multi-Agent Systems,
pp. 205–226. Springer, Heidelberg (2002)

13. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

14. Pokahr, A., Braubach, L., Lamersdorf, W.: A Goal Deliberation Strategy for BDI
Agent Systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg
(2005)

15. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: van der Velde, W., Perram, J.W. (eds.) Agents Breaking Away, pp.
42–55. Springer, Heidelberg (1996)

16. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003) (2003)

17. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C., de Boer, F.S.: Goal-Oriented
Modularity in Agent Programming. In: Birna van Riemsdijk, M. (ed.) Proceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pp. 1271–1278 (2006)

18. Wray, R.E., Laird, J.E.: An architectural approach to ensuring consistency in hi-
erarchical execution. Journal of Artificial Intelligence Research 19, 355–398 (2003)

Specifying and Verifying a MAS:

The Robots on Mars Case Study

Bruno Mermet, Gaële Simon, Bruno Zanuttini, and Arnaud Saval

GREYC - UMR 6072

Abstract. This paper deals with the design of multi-agent systems. We
demonstrate the goal-oriented agent model called Goal Decomposition
Tree on an already studied multi-agent example, that of robots which
must clean pieces of garbage on Mars. As we show, the model allows
to prove that the agents’ behaviour indeed achieves their goal. We then
compare our approach to other ones.

1 Introduction

Goal Decomposition Trees (GDT) have been introduced by Simon et al. [19] as
a model for specifying the behaviour of agents in a multi-agent system (MAS)
together with a complete approach for the design of MAS. This approach consists
in three steps:
1. an agentification step which helps the designer to determine the set of

agents which must be used to implement a given system;
2. a behaviour specification step using an agent design model (GDT) which

helps to design an agent behaviour that can be verified by a specific proof
system;

3. an implementation step using an implementation model based on au-
tomata which can be automatically generated from the agent design model.

Thus the aim of this global approach is to provide a complete MAS design
process starting from the problem specification and ending with an implemen-
tation. Central to this approach is the fact that it allows to produce verified
implementations of agents’ behaviours.

The goal of this paper is to present two important add-ons to the GDT model
and to demonstrate the second point above and the associated proof step on
an already studied example: two robots which must clean pieces of garbage
on Mars. The main add-on consists in the introduction of external goals to the
model: this is an important step to the verification of a whole multi-agent system.
The second one allows to increase the power of the proof system thanks to the
introduction of the Guaranted Properties in case of Failure. The scenario studied
has been proposed by Bordini et al. [2] for demonstrating model checking of
Rao’s AgentSpeak language [16]. They have proposed agents’ behaviours for this
scenario and verified them using model checking. We have chosen this scenario
because the goal of [2] (i.e. behaviour specification and proof) is very close to
ours.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 172–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Specifying and Verifying a MAS: The Robots on Mars Case Study 173

Thus this example allows us to compare the GDT model to the AgentSpeak
one. We specify the agents’ behaviour using the GDT model, mimicking as much
as possible the behaviour specified by Bordini et al. in order to facilitate the com-
parison. It turns out that the GDT model is as rich and concise as AgentSpeak,
and allows more elements to be formally taken into account, especially (atomic)
actions. Moreover, the GDT model also allows to prove the correctness of the
agents’ behaviours, whatever the number of pieces of garbage or the size of the
grid modelling the surface of Mars. This is to be opposed to the model checking
method presented by Bordini et al., which only allows to verify the MAS on a
finite number of grids in finite time (5 × 5 grids with 2 pieces of garbage in the
paper).

The paper is organized as follows. In Sections 2 and 3 the GDT model, its new
extensions and its proof system are specified. Then we present the Mars scenario,
specify the behaviours of the agents using GDTs and verify their correctness
(Section 4); in the light of this example, we compare our model to the AgentSpeak
language in details. Then we compare our work to other approaches (Section 5),
and finally we conclude.

2 Goal Decomposition Trees

In our approach, the behaviour of agents are represented by Goal Decomposition
Trees (GDT). These are trees whose nodes are goals, defined by a satisfaction
condition and associated either to atomic actions or to further decompositions
into subgoals. The GDT of an agent specifies its whole behaviour, and the sat-
isfaction condition of its root node is thus its main goal. GDT are presented in
details in [19], but we give here the notions relevant to the paper.

Nodes. As already said, nodes (either leaves or internal nodes) correspond to
the goals of the agent. To each node G a satisfaction condition (SC) is associated.
Intuitively, a goal is satisfied if and only if its SC is made true. SCs are expressed
over a restricted form of temporal logic, in which the states of variables used
before and after trying to achieve the goal can be distinguished. For instance, if
the SC of goal G is x′ > x∧x′ �= 0, G is achieved if x has been incremented and
is now nonnull.

Actions. The behaviour associated to a leaf goal (except external goals, detailed
later) is described either by a list of assignments or by a named action (NA), i.e.,
an atomic action which consists in a name, a list of parameters, a precondition and
a postcondition. Intuitively, the postcondition must entail the SC of the leaf goal.

Operators. Each internal node of a GDT is associated to a decomposition into
subgoals, linked up with an operator. Eight such operators are defined in [18].
For instance, SeqAnd is a classical lazy and ordered logical And operator, and
Iter allows to repeat a subgoal until the parent goal is achieved. Importantly,
operators are associated to automata composition patterns, which are used in-
crementally to build the complete automaton which implements the behaviour
specified by the GDT. For more details see [18].

174 B. Mermet et al.

In order to check the validity of our proof schemas, a formal semantics of
our operators has been given in temporal logic. This is not the purpose of this
article to describe this semantics, but here is an example for a not lazy node N
decomposed in N1 seqand N2:

�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(¬inN1 ∨ ¬inN2)
(inN1 ∨ inN2 → inN)
(endN1 ∧ satN1 → ◦initN2)
(endN1 ∧ ¬satN1 → ◦endN)
(endN2 ∧ satN2 → endN ∧ satN)
(endN2 ∧ ¬satN2 → ◦endN)
(initN → initN1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where initA, endA and inA are temporal variables that are respectively true
when the resolution of goal A begins, ends and and during the whole execution
of node A.

Typology of goals. In order to add flexibility to the specification and to take
nondeterminism into account, goals have types according to two criteria. First of
all, a goal (internal or leaf) can be necessarily satisfiable (NS) or not (NNS). In
the former case, the decomposition into subgoals or the action associated to the
goal always makes its SC true. In the latter case, the decomposition or action
may fail to satisfy the goal. For instance, for an internal goal decomposed thanks
to an AND operator, the father goal may fail if one of its subgoal fails. But if both
subgoals succed, also does the father goal.

Orthogonally, goals can be lazy (L) or not (NL). When the agent has to
achieve an L goal, it first checks whether its SC is true, and only in the negative
executes the decomposition or action. On the contrary, the agent must always
execute the decomposition or action of an NL goal. E.g., SCs which directly link
the values of the variables before and after the goal execution, such as x′ > x,
can be associated to NL goals only.

Along with these two criteria, the types of each internal node in a GDT can be
automatically determined by the types of its children together with the semantics
of the decomposition operator. Consequently, if specified by the designer, types
can be used to check the consistency of the specification.

External goals. External goals have been added to the model presented in [19].
Such a goal E in the GDT of an agent A is one which A cannot achieve (for
instance because it depends on variables that A does not control). Thus an SC is
as usual associated to E, but no action or decomposition, because another agent
(verifying an external property P) is expected to make it true. Consequently, in
this article, an external goal is an NS leaf goal together with a link to a goal G
in another GDT. The semantics is that when it must achieve E, agent A waits
until an agent with this latter GDT achieves its goal G, which will make the SC
of E true.

External goals are a way to express dependencies between agents, that is to say
collaborative agents. In particular, it can be seen as a specialization of “nonlocal
tasks” of TAEMS (there is no contracting with our external goals). Moreover,

Specifying and Verifying a MAS: The Robots on Mars Case Study 175

an external goal as the left operand of a SeqAnd can be seen as a specification
of an “enables” interrelationship in TAEMS. A more detaild comparison with
TAEMS can be found in [19].

GDTs. A GDT is a tree built up from nodes as specified above. In addition,
the following are associated to a GDT.

A set of variables specifies all environment variables together with a set of
internal variables of the agent. All formulas are built upon this set. A triggering
context (TC) specifies when the agent must execute its GDT (either the first or
each time it becomes true, depending on the agent). A precondition (PrecGDT)
is also given, which must be satisfied before the execution begins. In particular,
a given initialisation clause achieves it when the agent is created, and for GDT
executed several times, the precondition must be true again after each execu-
tion (in other words, before any GDT execution, PrecGDT is true). Finally,
an invariant describing the constraints of the problem is given, which must be
preserved through the whole execution.

3 The Proof Process

Our aim is to prove the correctness of the GDT built for an agent (i.e., to
prove that the behaviour specified by the tree always achieves the main goal
of the agent). For each operator described in section 2, several proof schemas
are defined according to types of goals. These schemas are intended to produce
Proof Obligations that describe what must be proven in order to validate a goal
decomposition. These schemas have been proven to be correct with respect to a
semantics of GDTs in LTL not described here and under the assumption that
actions are atomic and that parallelism can be represented by an interleaving
model.

Since a future goal is to use a theorem prover to perform proofs, proof schemas
are built in a rigorous manner to be automatized. Moreover, the compositional
aspect of proofs makes proof simple, maximizing the success rate of an automatic
theorem prover.

Applying these schemas to a GDT results in an agent’s behaviour composi-
tional proof. Each proof is performed using a context that can be computed by
a context propagation schema associated to each operator that is not described
here but that can be found in [13].

3.1 Notations

Variables. The set of environment variables is denoted by Ve, and the set of
internal variables of a given agent by Vi. For each agent, we assume Vi ∩Ve = ∅,
and whewe define V = Vi ∪Ve. Internal variables cannot be modified by another
agent, while environment variables are variables that the agent can see and
modify, but so can other agents or the environment itself.

176 B. Mermet et al.

Goals. The SC of a goal G is written SCG. For the proof process, a context
is also associated to G, which intuitively expresses what is known to be true
when G is about to be attempted. In particular, the context of the main goal
is TC ∧ PrecGDT (defined in section 2), and the context of the other nodes is
inferred from the GDT by context propagation schemas no detailed here. The
context of G is written CG. Finally, still for the proof process, something has to
be known about the outcome of the resolution attempt of an NNS goal. This is
expressed by a Guaranted Property in case of Failure (GPF). The semantics is
that if the solving process of a goal fails (to satisfy its SC), then its GPF is still
true. The GPF of a goal G is written GPFG. Indeed, without GPFs, when a
goal fails, no one property can be inferred from proof schema on the state after
the goal execution.

GDTs. The triggering context of a GDT is written TC, its precondition is
written PrecGDT , its initialisation clause (an assignement) is written initand
its main goal is denoted MG. Its invariant is written I = IS ∧ IA, where IS is
the invariant of the system (over Ve) and IA is that of the agent over V .

Temporal notation. In the SC of a goal G, the value of a variable x before and
after executing the actions or decomposition associated to G are distinguished
by primes: e.g., x′ < y means that the value of x after the agent has tried to
achieve G is less than that of y was before this attempt.

However, if the SC does not relate both moments, only unprimed variables
are used. This is for sake of consistency when considering the evaluation of the
SC of a lazy goals, before any execution. For instance, if the goal is to set x
to at least 2, then its SC is written x ≥ 2. In the proof schemas we thus use
a function, denoted T , such that for any goal G, primed variables in T (SCG)
describe relations between the variables when G is achieved. Thus, for instance,
T ((x′ < y)) = (x′ < y), while T ((x ≥ 2)) = (x′ ≥ 2).

Substitution. We note [x := y]P the syntactic substitution of any free oc-
curence of x by y in P .

Transition between two goals solving process. When considering two goals
G1 and G2 resolved sequentially (e.g., when proving a SeqAnd decomposition),
From the point of view of the agent, three states can be distinguished: S, the
state right before the solving process of G1, Stmp, the state between the G1
and G2 solving processes, and S′, the state right after the solving process of
G2. to unify variables v′ after the G1 solving process with the variables v before
the G2 solving process corresponding both to the value of variable v in state
Stmp, we replace them by variables vtmp by the two following substitutions:
[v′ := vtmp]SCG1 and [v := vtmp]SCG2 .

Projection. if F is a temporal logic formula and Sv a set of variables, we write
FSv the projection of F to the variables of Sv. For instance, if F = x < y∧x > 3,
Fx = x > 3. If Sv = Vi, we simply FVi by Fi.

Specifying and Verifying a MAS: The Robots on Mars Case Study 177

3.2 Proof Schemas

In this section, a few proof schemas are detailed. The normal proof process re-
quires to prove that the invariant is preserved by each goal of the GDT. However,
when a GDT is fully specified, performing this proof for leaf goals is enough.

In addition, since most of the goals of R1 in the following case study are NS,
we give proof schemas only for this kind of goals, and so GPFs are not involved.
However, as one of the Iter operator in the example has an NNS subgoal, the
Iter proof schema is given for this kind of subgoal.

Initialisation one must prove:

[init](PrecGDT ∧ IA) (1)

Moreover, for agents that can execute their GDT several times, the following
property must also be proven:

I ∧ T (SCMG) ∧ T (I) ⇒ T (PrecGDT) (2)

SeqAnd: Proving A ⇐ B SeqAnd C (when A is NL) requires to prove:

I ∧ CA ⇒
({

[v′ := vtmp] T (SCBi)
[v := vtmp] T (SCC)

}
⇒ T (SCA) ∧ T (I)

)
(3)

From the point of view of the agent, the state of its internal variables (and
only them) after its attempt to achieve B is unchanged when it begins to try
to achieve C; hence the substitutions of v′ by vtmp and of v by vtmp and the
projection SCBi onto the internal variables. Finaly, if A is lazy, the schema is
the same, with ¬ SCA as an additional hypothesis.

For instance, let consider the following example, where x is an internal variable
of the agent:

I = x ∈ N

CA = true
SCA = x′ = 2x + 2
SCB = x′ = x + 1
SCC = x′ = 2x

The proof schema generate the following proof obligation:

x ∈ N ∧ true ⇒ ((xtmp = x + 1 ∧ x′ = 2xtmp) ⇒ (x′ = 2x + 2 ∧ x′ ∈ N))

SyncSeqAndVs : This operator is a synchronized version of the SeqAnd operator
with a lock on a subset VS of Ve. Its proof schema is similar to the SeqAnd one,
but the projection onto internal variables Vi is replaced by a projection onto
Vi ∪ Vs.

Iter. To prove the decomposition A ⇐ Iter(B, V), a variant V is needed.
It corresponds to the formalisation of the progress notion in the resolution
of the parent goal. Formally, a variant is a decreasing sequence defined on a
well-founded structure. A well-founded structure is an ordered set such that
each strictly decreasing sequence defined on this set has a lower bound. In the

178 B. Mermet et al.

following, we will denote the variant lower bound by V0. Thus proving that
A ⇐ IterB is correct requires proving that:

– if V reaches its lower bound, then A is achieved:
I ∧ (CA ∨ CB) ∧ T (SCB) ⇒ (T (V) = V0 ⇒ T (SCA)) (4)

– CB is stable during the loop until A is achieved:

I ∧ (CA ∨ CB) ∧ T (SCB ∨ GPFB) ∧ ¬T (SCA) ⇒ T (CB) (5)

– the variant decreases: this may be proven whatever the success of B by
proving:

I ∧ (CA ∨ CB) ∧ ¬T (SCA) ⇒ (T (SCB ∨ GPFB) ⇒ T (V) < V) (6)

thanks to this last proof schema, the termination of A is guaranted, if B
succeeds one or more time, or even if B never succeeds.

External Goals. The proof schema associated to external goals is quite different
from the other ones. Let EGA be an external goal of an agent A associated to
an external property P and referencing a goal GB of another agent B.

The proof consists in showing that:

– GB is NS;
– achievement of GB entails achievement of EGA;
– when A waits for the achievement of EGA, B will eventually achieve GB .

The first item is a syntactic and trivial verification. The second one amounts
to proving:

IS ∧ IA ∧ IB ∧ CEGA

CGB ∧ P

}
⇒ ([v := v0]T (SCGB) ⇒ [v := v1]T (SCEGA)) (7)

where substitutions [v := v0] and [v := v1], replacing non-primed variables with
free variables, allow to memorize the state of the system before the execution of
goals EGA and GB .

Finally, the third verification is divided into two steps: identifying the set of
goals SB whose contexts are consistent with CEGA (and checking GB is in this
set) and then verifying for each trace corresponding to a behaviour of B that each
time a state of B corresponds to the achievement of a goal in SB then another
state in the future corresponds to the achievement of GB. The formalisation
of this part of the proof schema is not detailed in this paper because it would
require to expose the semantics of our operators in temporal logic, which is quite
too long to be exposed here.

4 Application

In [2], a scenario with two agents that must collaborate is described. An im-
plementation using Agentspeak and a verification based on model-checking are

Specifying and Verifying a MAS: The Robots on Mars Case Study 179

proposed. This case study has not been chosen to prove the applicability of
our model to a real case, but to allow a comparison with another agent speci-
fication language and verification system. Using Bordini et al.’s description as
a specification, we designed GDT models for the two agents of this scenario.
In the following, some highlights of these GDTs and the associated proofs are
presented. Finally, a comparison with the work exposed in [2] is detailed.

4.1 The Scenario

Agentspeak. The Agentspeak(L) language has been designed by Rao [16]. The
goal of Agentspeak is to express the behaviour of BDI agents. An Agentspeak
agent has a base of goals, a base of beliefs and a set of plans. A plan, in Agents-
peak, is represented by a rule made of three parts: a triggering event (a goal
or belief insertion or deletion), a context, and a list of actions. Agentspeak(L)
allows to describe agents in a quite implementable way, but is not suitable to
perform proofs by theorem proving for many reasons. For instance, goals are
not described formally and most actions have to be implemented directly in the
target language (Java for instance).

The Robots on Mars (RoM) scenario. The RoM scenario involves two
robots that must remove garbage on Mars. Mars is represented by a rectangu-
lar grid on which pieces of garbage are randomly distributed. Each robot has
different skills.

The first one, R1, moves on the grid to search for pieces of garbage. It can
grab them only one by one. When it finds one, it picks it up (in at most three
attempts), brings it to the position of R2, then drops it and finally goes back
to its previous location and resumes its search. The second robot, R2, cannot
move: it can only burn a piece of garbage situated in its cell. Of course, R1 does
not grab garbage that are on R2’s cell.

R1’s behaviour can be summarized as follows (corresponding plans in the
Agentspeak implementation are given):

1. it checks its position for a piece of garbage, if there is nothing, it goes to the
next slot (plan p1);

2. otherwise (plan p2 to p7):

(a) it tries to grab this garbage at most three times,
(b) it brings the garbage to R2 and drops it,
(c) it goes back and repeats (1).

For instance, plan p1 is the following:
+pos(R1,X1,Y1):checking(slots) & not(garbage(r1)) ← next(slot).
The behaviour of R2 is the following:

1. it waits for a piece of garbage to be in its cell,
2. it takes the new piece of garbage,
3. it burns it and repeats (1).

180 B. Mermet et al.

4.2 GDTs for the RoM Scenario

Add-ons to the initial specification. In [2], a few parts of the robots be-
haviour were unspecified or under-specified. So we had to make the following
choices:

Garbage distribution. In Bordini et al.’s work, it is not specified whether each
cell of the grid can contain at most one or more pieces of garbage. We decided
that there is at most one piece of garbage in each cell.

Grabbing success. The informal specification states that a piece of garbage is
grabbed by R1 in at most 3 attempts, but this is not explicit in the Agentspeak
model. We made it explicit in our GDT.

Grid exploration. In [2], R1 explores the grid thanks to the next(slot) action,
which is not specified. We chose to provide R1 only with actions allowing it to
move one cell horizontally or vertically. This led us to specify its behaviour when
moving, included for avoiding R2’s cell (we chose to make it go through the grid
row by row, from top to bottom, from left to right on odd lines and from right
to left on even lines). Moreover, in [2], next(slot) seems to always succeed, but
the action performed when R1 reaches the end of the grid is not specified. In the
GDT presented here, R1 stops. We designed another GDT where R1 goes back
to the first cell, but it is not presented here.

Synchronisation between R1 and R2. Since we specified that a cell cannot
contain more than one piece of garbage, R1 cannot drop a new piece of garbage
on R2’s cell if R2 has not picked up the previous one yet. This synchronisation
is not specified in [2]. Moreover, R2 is satisfied (and so cannot act before R1 has
dropped a piece of garbage in its cell). So, there are two synchronisations:

– R1 waits for R2 to pick up the piece of garbage.
– R2 waits for R1 to drop a piece of garbage,

The first one is specified by an external goal in the GDT of R1 whereas the
second one is specified thanks to the triggering context of the GDT of R2.

The environment. The environment is described by a variable G. G(x, y) is
true if there is a piece of garbage in the cell at position (x, y) and false otherwise.
R2’s position, which is constant, is also described by two environment variables
xR2 and yR2, and so are the minimum and maximum coordinates of the grid
(variables xmin, xmax, ymin, ymax).

Robot R1. The goal of this robot is to clean the grid. To ensure it, it uses
a variable named clean, which is a set of cells. This set is initially empty, and
a cell can be added to it only by the action of picking a garbage or when it is
observed to be clean. R1’s main goal is MGR1 = (clean = grid), where grid is
the set of all cells on the grid except R2’s.

R1 also has variables x and y describing its position on the grid. Its other
variables are not presented here.

Specifying and Verifying a MAS: The Robots on Mars Case Study 181

To design the failure possibility of the arm grabing the garbage, we used an
Iter operator where the subgoal describing the attempts is a NNS leaf one, so it
can fail. In the proof, we show that the parent goal is achieved after, at most,
three iterations.

The whole GDT of Robot R1 is presented figure 1. The satisfaction conditions
of the nodes are not described here but we described informally the structure of
the tree in the following.

The iter operator below node 1 correspond to the iteration on the set of the
cells of the grid. So, node 2 correpond to the couple of actions “clear the current
cell” (node 3) and go to the next cell different from R2’s one (node 25).

In the left sub-tree, node 4 memorizes the fact that current cell is about to
be cleaned. The sub-tree whis node 6 as root node correspond to the attempts
of R1 to pick the piece of garbage on the current cell. The right subtree of node
5 is itself decomposed into two subtree: the first one, with node 11 as root node,
makes R1 go to R2’s and drop its garbage when R2’s is empty (node 12 register
the current cell: this is necessary so that R1 knows where to go back when it
has brought a piece of garbage to R2). The second one makes R2 go back to the
registered position. Each time a move must be performed, a Case operator allow
an undeterministic choice between an horizontal and a vertical move (nodes 15,
22 and 28).

Robot R2. The GDT of R2 is simpler than R1’s one. Its GDT correponds
exactly to the behaviour described in [2]. It just picks up the garbage and burns
it. So, its main goal is to be non busy and to have its cell clear: the satisfaction
condition of its main goal is SCMGR2 = (¬busyR2 ∧ ¬G(xR2, yR2)). The syn-
chronisation needed to ensure that R2 waits for a piece of garbage to burn is
not directly expressed in the structure of the GDT but thanks to its triggering
context TC(R2) = G(xR2, yR2). In fact, the GDT will be executed if and only
if there is a piece of garbage at the position of R2. Let us notice that since R2
must not be busy before each of its executions, the property ¬busyR2 is in the
PrecGDTR2 property.

4.3 Examples of Proofs

We now present three detailed local proofs of nodes in R1’s GDT with, for each
one, an informal description and the subtree associated to the parent goal. The
full proof of the two GDTs can be found at [14].

SyncSeqAnd example. We first consider the part of the GDT where R1 drops
a piece of garbage onto R2’s cell (Figure 2 (a), where the rectangle denotes an
external goal). R1 first waits for R2’s cell to be empty (external goal B, “Empty
cell”, detailed below), then drops the piece of garbage it holds (leaf goal C,
“Drop”). Variable G(x, y) is synchronized in order to ensure that once R1 has
observed the cell is empty, it stays so until R1 drops it garbage.

182 B. Mermet et al.

L

L

LL

L

L

L

SeqAnd

Case

CaseSeqAnd

SeqAnd

SeqAnd

CaseSeqAnd

Case

Case

Iter

Iter

Iter

Iter

Iter

1

2

25

26

2827

29 3021

22

2423

10

5

3

4

6

7 8

9 12

14

13

11

18

19 2015

16 17

SyncSeqAndd
G(x,y)

G(x,y)
SyncSeqAnd

record
clean
cell

initialize
nb. attempts

pick posSaved’
=pos

moveH(...)

wait R2’s
cell empty

drop

moveH(...)

skip

moveV(+1) moveH(...)

...

pos!=endGrid

G(x,y)

dxR2!=0 dyR2!=0

moveV(...)

moveV(...)

dxSaved!=0 dySaved!=0

! G(x,y)

pos=endGrid

Fig. 1. GDT of robot R1

We have: ⎧
⎪⎪⎨

⎪⎪⎩

CA = (x, y) = (xR2 , yR2) ∧ busy
SCA = ¬busy′ ∧ G′(x′, y′) ∧ (x′, y′) = (x, y)
SCB = ¬G(x, y) ∧ busy
SCC = ¬busy′ ∧ G′(x′, y′)

Moreover, the parent Goal A is NL and NS. So, to prove the decomposition of
A, according to the schema in Section 3 we have to prove:

I ∧ CA ⇒ [v′ := vtmp]T (SCBi,G(x,y)) ∧ [v := vtmp]T (SCC) ⇒ T (SCA)

That can be rewritten:

H ⇒ (¬busy′ ∧ G′(x′, y′) ∧ (x′, y′) = (x, y))

Specifying and Verifying a MAS: The Robots on Mars Case Study 183

C
Drop

L

A

SyncSeqAnd
G(x,y)

(a) (b)

L

A

Iter

Pick
BB

Empty Cell

Fig. 2. Subtrees of R1’s GDT

Conjuncts ¬busy′ and G′(x′, y′) are entailed directly by [v = vtmp]T (SCC).
Now since variables x, y are internal and do not occur in SCB and SCC , we
have (x′, y′) = (x, y) and finally, T (SCA). Let Observe that synchronisation of
G(x, y) is not used in this proof; it is used only in the context propagation, for
ensuring that the context of C entails ¬G(x, y) as established by SCB.

Iter example. We now consider the part of the GDT where R1 tries to pick up
the piece of garbage on the current cell until success (Figure 2 (b)). R1 iterates
over subgoal B, “Pick”, which consists in applying the named action pick (recall
that this action may fail, but succeeds after at most three attempts).

Since this subtree ends up with picking a piece of garbage, variable clean (set
of positions R1 has cleaned or observed to be clean) is involved. In order to
simplify the presentation, we however chose to remove it from the contexts and
satisfaction conditions here, as well as condition (x, y) �= (xR2 , yR2), which is
stable in this subtree.

The variant used in the proof involves variable nbAttempts; this variable
counts the number of times R1 has already tried to pick up the piece of garbage.
Moreover, the Guaranteed Property upon Failure (GPF) of an NNS goal is a
formula which is true when the goal fails.

We have:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CA = G(x, y) ∧ ¬busy ∧ nbAttempts = 0
CB = G(x, y) ∧ ¬busy ∧ nbAttempts < 3
SCB = ¬G′(x′, y′) ∧ busy′

GPFB =

⎧
⎨

⎩

G′(x′, y′) ∧ busy′ = busy
∧ nbAttempts′ = nbAttempts + 1
∧ nbAttempts < 3

Moreover, the parent node is lazy and NS, and its satisfaction condition is SCA =
¬G′(x′, y′) ∧ busy′ = SCB.

184 B. Mermet et al.

Let V = (3−nbAttempts) be the variant and let its lower bound be V0 = 0. V
is well-defined because the invariant I of R1 entails nbAttempts ≤ 3. According
to the schema in Section 3, we have to prove:

I ∧ (CA ∨ CB)
¬SCA

}
⇒

⎧
⎨

⎩

T (SCB) ⇒ T (V) = V0 ⇒ T (SCA) (1)
¬T (SCA) ⇒ (T (SCB) ∨ T (GPFB)) ⇒ T (V) < V (2)
¬T (SCA) ⇒ (T (SCB) ∨ T (GPFB)) ⇒ T (CB) (3)

Entailment (1) is obvious since T (SCB) = T (SCA).
Entailment (2) holds when T (SCB) is true because in that case, ¬T (SCA)

is false (as SCA=SCB). It also holds with T (GPFB) because T (GPFB) entails
that nbAttempts′ = nbAttempts + 1, which in turn entails T (V) < V (as V =
3 − nbAttempts and T (V) = 3 − nbAttempts′).

Entailment (3) holds when T (SCB) for the same reason as entailment (2).
Finally, it also holds with T (GPFB) because T (GPFB) together with either CA

or CB clearly entails T (CB).

External goal example. We finally consider the external node B on Fig-
ure 2 (a) in the GDT where R1 waits for R2’s cell to be empty, in order to be
allowed to drop the piece of garbage it holds onto it. Since R1 cannot empty this
cell itself, it must wait for R2 to do it.

The goal of R2 achieving R1’s desire is its main goal MGR2. This goal is
decomposed into two subgoals using a SyncSeqAnd operator, namely goal “Pick”
and goal “Burn”. R2 has an internal variable busyR2 which is true if R2 currently
holds a piece of garbage and false otherwise.

As a consequence, we have:
⎧
⎨

⎩

CB = (x, y) = (xR2 , yR2) ∧ busy
SCMGR2 = ¬busyR2 ∧ ¬G(xR2 , yR2)
SCB = ¬G(x, y) ∧ busy

According to the proof schema in Section 3, we first have to check that R2’s
goal MGR2 is NS, which is the case.

Now we have to check that the achievement of MGR2 entails the achievement
of R1’s goal B by applying proof schema 7, that can be here approximatively
simplified in CB ∧ T (SCMGR2) ⇒ T (SCB). Again, this is true since:

– busy′ in T (SCB) is entailed by busy in CB together with the fact that busy
being an internal variable of R1, busy′ = busy,

– ¬G′(x′, y′) in T (SCB) is entailed by ¬G′(xR2 , yR2) in T (SCMGR2) together
with (x, y) = (xR2 , yR2) in CB and the fact that x, y are internal variables
of R1 and xR2 , yR2 are constants.

Finally, we have to check that every state of R2 which is compatible with
CB finally ends up with the achievement of MGR2. When R1 waits for B to be
satisfied, as B is lazy, we have:

CB ∧ ¬SCB

Specifying and Verifying a MAS: The Robots on Mars Case Study 185

that is to say:

(x, y) = (xR2, yR2) ∧ busy ∧ ¬(¬G(x, y) ∧ busy)

that can be rewritten:

(x, y) = (xR2, yR2) ∧ busy ∧ (G(x, y) ∨ ¬busy)

that can be simplified:

(x, y) = (xR2, yR2) ∧ busy ∧ G(xR2, yR2) (8)

As a consequence, the context of the Burn node of R2 entails ¬G(xR2, yR2),
which is not compatible with equation 8. So the set of compatibles goals of R2
with B is {Pick, MGR2}. If R2 is executing goal MGR2, this goal is NS, and so
will be achieved, implying that SCB will be true. If R2 is executing goal Pick,
as this goal is NS and is followed (thanks to a SeqAnd operator) by another NS
goal (Burn), the parent goal (which is MGR2) will also be satisfied and so will
be B.

Finally, we have to considered what happens if R2’s GDT execution is ended.
Recall that the triggering context of R2 defined in section 4.2 is TC(R2) =
G(xR2, yR2). this is obviously entailed by equation 8 above. And so, R2, will
reach the execution of its main goal, which satisfies goal B.

4.4 Comparison with Bordini et al.’s Work

Goal decomposition. The body of an Agentspeak plan is “a sequence of basic
actions or (sub)goals that the agent has to achieve (or test) when the plan is
triggered”. There are two kinds of such subgoals: the first kind must be achieved
by other plans whereas the second one consists in beliefs additions or deletions.
In a GDT, the first kind is specified by a goal decomposition and the second one
corresponds to variable modifications inside leaf goals. So, there is a similarity
between our goal decompositions and Agentspeak plans. However, as shown in
the next section, the verification of behaviours is completely different.

Verification and proof. Verification in AgentSpeak is based on model-checking
which takes place after the implementation step with JPF2. In [2], it has been
made on an instance of this scenario where the size of the grid is 5x5 and with
only 2 pieces of garbage. On the contrary, our proof is performed only once for
all instances of this scenario without any constraint on the number of pieces of
garbage, on the size of the grid and on the position of R2. Of course, when work-
ing with first-order logic, theorem proving is not decidable, leading some true
properties unproved whereas model-checking can be automatically performed
with a computable complexity. However, to obtain the same level of proof as
ours on the RoM problem, it would be necessary to test an infinite number of
situations, because the grid can be of any size.

Another interesting aspect of our proof process is that it helped us to find
some problems in our first designs of GDTs before their implementation. Indeed,
proof failures give local clues to solve inconsistencies or to highlight lacks in the

186 B. Mermet et al.

specification. In that case, the compositional aspect of our proof process implies
that required modifications of GDTs do not make the whole proof fail but only
parts associated to goals involved in this modification. For instance, the presence
of ¬busyR2 in PrecGDTR2 was not specified in a first version, generating a proof
failure when R2 had to pick up a piece of garbage (he might have already been
busy). Modifying this property also implied to modify the init clause of R2 to
avoid a new proof failure.

Finally, model-checking performed on the RoM scenario can only be done
on a complete implementation. For instance, an implementation of next(slot)
must be provided in order to verify properties presented in [2]. Thanks to the
compositional property of our proof process, the proof of the correctness of the
behaviour of R1 can be made in two steps. In a first step, the correctness of the
behaviour of R1 can be obtained under the assumption that next cell, the goal
corresponding to the next(slot) basic action, provides a behaviour ensuring that
R1 moves to a never visited cell different from R2’s. To do this, next cell was
specified by a goal with only a satisfaction condition but no subtree. In a second
step, we have specified the next cell goal by a subtree. The proof process has
then allowed to prove the correctness of the subtree with respect to the next cell
satisfaction condition.

Expressiveness and conciseness. Since satisfaction conditions used in a GDT
are based on sets theory, arithmetics and temporal logic, they are at least as
expressive as Agentspeak and they allow to completely specify behaviours of
BDI agents, the base of beliefs being represented by the set of the variables
of the agent. For instance, we did not find any lack of expressiveness when we
applied the model to the RoM scenario.

Another interesting comparison deals with the conciseness of Agentspeak and
GDT. At first glance, Agentspeak seems quite more concise: the Agentspeak
model for robot R1 is made of 9 plans whereas the GDT of R1 contains 30
nodes. However, the Agentspeak model uses unspecified actions (drop, grab,
nextslot, etc.) that we fully specified in our GDT (since we wanted an automatic
translation to an implementation). If these implementation details are removed
from the GDT, its size becomes equal to 13 nodes with at most 2 subgoals each,
which is comparable to the number of plans in the Agentspeak model, where
each plan has up to 3 subgoals.

Finally, we wish to emphasize that our model allows to take into account
the semantics of the actions, thanks to preconditions and postconditions. Every
modification of a variable corresponding to an actuator which is used in the
agent’s goal can only be done through named actions.

5 Related Works

The GDT model of an agent behaviour and the associated proof system are
differently connected to several different kinds of works. First of all, there are
links with formal agent models like MetateM [9], Desire [4] or Gäıa [22]. These

Specifying and Verifying a MAS: The Robots on Mars Case Study 187

works are focused on agent models on which it is possible to reason which is
necessary for analysis and especially for proof problems. A part of these formal
models like [21,8,20] are focused on a declarative description of goals, which is
exactly our point of view. A detailed comparison of these approaches with the
GDT model can be found in [19]. There are also links between our proposal and
agent programming languages like AgentSpeak [16], 3APL [7], ConGolog [10].
These languages allow to specify agents behaviours which can be directly exe-
cuted which is one of the goals of the GDT model. However, 3APL does not
allow to prove the specified behaviour and ConGolog is dedicated to situation
calculus. Our approach can also be compared to goal oriented MAS development
methods like Prometheus [12], MaSe [6], KAOS or Tropos. Indeed, our proposal
is also intended to provide a complete MAS design process from the specification
to the implementation. Moreover our approach takes place in the framework of
“formal transformation systems” as defined in [6]. A detailed comparison of these
works with the GDT model can be found in [19]. Last but not least, our proposal
can be directly compared to SMA verification methods. Two subtypes can be
distinguished: theorem proving based (like in PROSOCS) and model checking.

PROSOCS [3] agents are agents whose behaviour is described by goal decom-
position rules à la Prolog. Rules are parameterised by time variables allowing
to perform proofs about the evolution of the system state. Many characteris-
tics of PROSOCS agents are very interesting for performing proofs, and a proof
procedure has been implemented in Prolog. However, the system is limited to
propositional logic formulas. The Goal [8] method also has a proof model, but
is limited to propositional logic too.

Model checking is a verification method consisting in testing all the situa-
tions which may be encountered by the system. Two kinds of model checking
can be distinguished: bounded model-checking [2] and unbounded-model check-
ing [1,15,11]. However, with the two types of model-checking, proofs can only be
performed on finite models or on models that can be considered as finite ones.

6 Conclusion

We have demonstrated the GDT model on an already studied example, and
shown that it is as interesting as Agentspeak in terms of expressiveness and
conciseness, but also allows to prove behaviours (as opposed to model checking
or no verification at all).

Arguably, GDT are graphically rather complex to manipulate. This is why
we have created an application, called GdtEditor, which allows to edit GDTs
and all related information (satisfaction conditions, variables, actions. . .), and
to export them in various formats. The application also automatically generates
the implementation model (in Java), as is allowed by the model. This application
is available at [17]. Current work aims at integrating it a theorem prover. Once
the substitutions applied, our proof schemas generate proof obligations similar
to those of the B method. As a consequence, using a prover of this method like
krt [5] should be straightforward. Preliminary tests confirm this. An automatic

188 B. Mermet et al.

connexion with this prover should be presented in a future article. A small per-
centage of the proofs of true properties may fail, but krt provides an interactive
mode that allows to help the prover in these proofs.

Current work on the method aims at generalizing the model of external goals
in order to allow specification and proof of more interactions, in particular when
several other agents are needed to achieve an external goal. We are also working
on parameterizing GDTs together with their proofs, so as to be able to factorize
similar subtrees or more generally to reuse behaviours.

References

1. Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resource-
bounded agents. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004.
LNCS (LNAI), vol. 3394, Springer, Heidelberg (2005)

2. Wooldridge, M.J., Visser, W., Bordini, R.H., Fisher, M.: Verifiable Multi-agent
Programs. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) PROMAS
2003. LNCS (LNAI), vol. 3067, pp. 72–89. Springer, Heidelberg (2004)

3. Bracciali, A., Endriss, U., Demetriou, N., Kakas, T., Lu, W., Stathis, K.: Crafting
the mind of prosocs agents. In: Best of ’From Agent Theory to Agent Implemen-
tation 4’ (to appear, 2004)

4. Brazier, F.M.T., van Eck, P.A.T., Treur, J.: Modelling a Society of Simple Agents:
from Conceptual Specification to Experimentation. In: Simulating Social Phenom-
ena, Lecture Notes in Economics and Mathematical Systems, vol 456., pp. 103–109
(1997)

5. Clear-Sy. B for free, http://www.b4free.com/public/resources.php
6. Deloach, S.A., Sparkman, C.H., Self, A.L.: Automated derivation of complex agent

architectures from analysis specifications. In: Wooldridge, M.J., Weiß, G., Ciancar-
ini, P. (eds.) AOSE 2001. LNCS, vol. 2222, Springer, Heidelberg (2002)

7. Dastani, M., de Boer, F., Dignum, F., Meyer, J.-J.: Programming agent delib-
eration: An approach illustrated using the 3apl language. In: Proceedings of the
Second International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2003) (2003)

8. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: Agent program-
ming with declarative goals. In: 7th International Workshop on Intelligent Agents.
Agent Theories Architectures and Language, pp. 228–243 (2000)

9. Fisher, M.: A survey of concurrent METATEM – the language and its applications.
In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 480–505.
Springer, Heidelberg (1994)

10. De Giacomo, G., Lesperance, Y., Levesque, H.J.: Congolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1-2), 109–
169 (2000)

11. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via
unbounded model checking. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AA-
MAS 2004. LNCS (LNAI), vol. 3394, Springer, Heidelberg (2005)

12. Khallouf, J., Winikoff, M.: Towards goal-oriented design of agent systems. In: Pro-
ceedings of ISEAT 2005 (2005)

13. Mermet, B., Fournier, D., Simon, G.: An agent compositional proof system. In:
From Agent Theory to Agent Implementation (AT2AI 2006) (2006)

http://www.b4free.com/public/resources.php

Specifying and Verifying a MAS: The Robots on Mars Case Study 189

14. Mermet, B., Simon, G., Saval, A., Zanuttini, B.: GDTs and Proofs for Robots on
Mars. Technical report, GREYC (2006),
http://scott.univ-lehavre.fr/∼mermet/GDT/applications/proofRoM.pdf

15. Raimondi, F., Lomuscio, A.: Verification of multiagent systems via orderd binary
decision diagrams: an algorithm and its implementation. In: Kudenko, D., Kazakov,
D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI), vol. 3394, Springer, Heidelberg
(2005)

16. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
Springer, Heidelberg (1996)

17. Saval, A.: Robots on mars: implementation (2006),
http://arnaud.saval.free.fr/backup/applet/page.html

18. Simon, G., Flouret, M.: Implementing Validated Agents Behaviours with Automata
Based on Goal Decomposition Trees. In: Müller, J.P., Zambonelli, F. (eds.) AOSE
2005. LNCS, vol. 3950, pp. 124–138. Springer, Heidelberg (2006)

19. Simon, G., Mermet, B., Fournier, D.: Goal decomposition tree: An agent model to
generate a validated agent behaviour. In: Baldoni, M., Endriss, U., Omicini, A.,
Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 124–140. Springer,
Heidelberg (2006)

20. van Riemsdijk, M.B., Dastani, M., Dignum, F., Meyer, J.-J.C.: Dynamics of declar-
ative goals in agent programming. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 1–18. Springer, Heidelberg
(2005)

21. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural
goals in intelligent agent systems. In: 8th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2002) (2003)

22. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3(3), 285–312 (2000)

http://scott.univ-lehavre.fr/~mermet/GDT/applications/proofRoM.pdf
http://arnaud.saval.free.fr/backup/applet/page.html

Tracking Causality by Visualization

of Multi-Agent Interactions Using
Causality Graphs

Guillermo Vigueras and Juan A. Botia

Departamento de Ingenieŕıa de la Información y las Comunicaciones
Universidad de Murcia, Spain

Abstract. Programming multi-agent systems is a hard task and re-
quires tools to assist in the process of testing, validation and verifi-
cation of both MAS specifications and source code. In this paper, we
propose the use of causality graphs, adapted to the context of debugging
multi-agents systems, to track causality of events produced in interac-
tions among agents in a group. We believe that simple sequence diagrams
are not enough to visually track what are the predecessors or causes of
a given new event (i.e. an unexpected message or the observation that a
message did not came). We propose this kind of graph as an alternative.
We redefine the concept of causality graph for this particular field and
propose an algorithm for generation of such a graph.

1 Introduction

Multi-agent systems act in a coordinate fashion to achieve their individual and
global goals with sufficient level of guarantee. Coordination is done, most of
the time, through complex interactions which involves two or more agents. Pro-
gramming multi-agent interactions is a delicate task because it is prone to errors
due to, most of the times, the lack of tools which assist in the production of a
verified and validated design and a correct and even automatic implementation
of the interactions. Multi-agent systems interactions are instances of interaction
protocols definitions. The definition of an interaction protocol is compound of
three different parts. The first one is a specification of the possible sequence of
messages exchanged between participants. The second one is the semantics of
the performatives. The third one, although this part does not always appears
in the definition, refers to the kind of content which could appear in the mes-
sages exchanged. We can find many examples of these definitions on FIPA-IEEE
specifications1. In this paper, we rely on the first part of an interaction proto-
col definition, to assist in tracking the causality of a given communicative act.
Causality of a concrete event (i.e. a message exchanged, an undesired result
of the interaction studied, an unexpected conversation, etc.), in the context of
multi-agent interactions, may be loosely defined as the cause which directly or
indirectly leaded to generate the event. What we propose in this paper is the
1 www.fipa.org

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 190–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tracking Causality by Visualization of Multi-Agent Interactions 191

use of causality graphs to track causality messages inside multi-agent conversa-
tions. In order to do that, we propose the use of causality graphs adapted to
the particularities of multi-agent systems, to follow the thread which starts on
the event generation and goes back to the root cause of it. We define our own
kind of causality graph, and algorithm for its creation, starting from a logically
ordered set of messages exchanged, through logical clocks [11,8,13]. Events, as
we consider them, refer only to sending and receiving messages. Only these two
kinds of events are obvervable by an external entity. Events realted with the
internals of the agents are not considered as the external entity does not have
access to them.

The rest of the paper is organized as follows. Section 2 introduces the notion
of causality in the context of a MAS interaction. Section 3 analyzes the problems
of ordering events in a distributed system and gives a discussion about available
techniques to solve this problem when messages in a MAS have to be ordered
in some way. Section 4 introduces the technique we proposse to keep track of
causality. Section 5 put this technique in the appropriate context and finally,
section 6 enumerates most important conclusions and open issues.

2 Representing Causality through MAS Interactions

Testing multi-agent systems consists of the design, application and analysis of a
set of test cases for multi-agent software, with the intention of finding errors in
the code [14]. Verification has the intention of checking whether a MAS is cor-
rect with respect to its specification, e.g. the developer can check if some mental
state properties are maintained by agents along system time execution [1]. Val-
idation consists of checking whether a multi-agent system fulfills its designs re-
quirements or not, i.e. to check whether the system works as the user expect or
not [4]. In order to integrate testing, validation and verification in the MAS de-
velopment cycle, is important to offer tools to perform these tasks in an easy way.
This kind of tools should offer an abstract view of a MAS, which shows the perfor-
mance of the system to detect errors in a easy and fast way, to reduce development
costs and effort. In this paper, we propose an acyclic graph, which shows causality
among messages sent by agents, extracted from conversations previously logged.
An example of such a graph is presented in figure 1. In that graph, a multiparty
conversation is represented, in which A1 is the initiator agent (corresponds to the
first and last nodes of the graph, if we read it from the upper to the bottom part)
and A2, A3, ..., An are participants. An example of a simple conversation inside the
complex conversation, is the one between A2 and A4. As in both previous cases,
agents A3, ..., An can interact using simple or multiparty conversations, with the
rest of agents in the MAS, before they answer to A1. The graph in figure 1, shows
clearly that message m1 is the cause that agent A2 sends to A4 the message mn+1.
Like this, if some sent message is not as expected or the agent does not receive an
expected message, we can use a simple search inside the graph to locate the cause
event, but also the developer will be able to analyze visually message trace that
generate the wrong message, and find where the bug is.

192 G. Vigueras and J.A. Botia

Fig. 1. Causality graph showing multiparty conversation among A1 and A2, A3, ..., An

In order to generate a graph like the one which appears in figure 1, we need to
have the whole set of messages exchanged by the agents of interest. Moreover, we
need to have them ordered, in such a way that message mj does not appear before
message mi if mi actually occurred before mj in the conversation, for any mi, mj

in the whole set of messages sent. The rate of event occurrence can be very high
in a multi-agent system. Reason why it will be virtually impossible to obtain
the causal precedence relation among events, if physical clocks of each system
element are not synchronized precisely. It is due to physical clocks precision is not
accurate enough related with the high number of MAS events. Thus, for example,
the Internet’s Network Time Protocols, NTP for short, which maintains a time
accurate to a few tens of milliseconds, are not adequate for capturing causality
in distributed systems. For this reason, to order MAS events logically, different
methods based on logical clocks [11], might be used instead of each agent’s clock.
Other approaches to do that rely on a priori assumptions like, for example, the
existence of additional information inside messages which allow to recompose
the mentioned order. This is the case for FIPA agents and the use of two slots
in ACL messages which are Reply-with and In-reply-to which may be used
for this purpose. But this option was discarded mainly for two reasons. The first
one, and most important, is that FIPA slots mentioned above allow to establish
a causal order only among messages which belongs to the same conversation, in
this way, in the graph in figure 1, conversation between A2 and A4, generated as a
consequence of the message sent by A1 to A2, will appear in another disconnected
subgraph. Hence, keep track of causality among different disconnected subgraphs
could be an unaffordable task. The second reason to avoid use FIPA slots is that
FIPA specifications are not implemented by all agents platforms. Because our
aim is to design a tool to be platform independent, we do not use this technique.
Methods based on logical clocks are explained in following section.

Tracking Causality by Visualization of Multi-Agent Interactions 193

3 Ordering Events in a Distributed System

There are two main types of methods to obtain an adequate logical order of
events by means of logical clocks in a distributed system, depending on the
information represented in each event [11,8,13], they are either vector or matrix
based logical clocks.

Logical clock vectors [11], allow to determine causal precedence relation among
events in a distributed system in which each process has synchronization prob-
lems. Problems that might made impossible to establish a precedence relation
in the system.

A logical clock is a counter, one for each process or active entity in the dis-
tributed system, which keeps track of order of occurrence of events in processes.
In a vector based logical clock, we have a counter for any single process in the
distributed system which generates events of interest. Each event has a logical
clock, which allows it to be ordered by means of a simple ordering relation.
Given two vectors v1 and v2, both with n components, we say that v1 ≤ v2 if
v1[i] ≤ v2[i], 1 ≤ i ≤ n. Also, we have v1 < v2 when they are v1 ≤ v2 and there
exist at least, an i such that v1[i] < v2[i].

Using this simple relations, and an appropriate technique for updating the
vector counters, we can order two events: given two events e1 and e2, stamped
with vectors, ve1 and ve2 , respectively, if ve1 < ve2 , we can say that e1 happened
before than e2. Details on the update process are out of the scope of this article.

As an alternative, we have logical clock matrix. In this case, instead of rep-
resenting events with so n counters, being n the number of distributed entities,
we use a n × n matrix. We store much more data but at the same time, we
have much more information. For example, let m[j, k] be a concrete counter of
the matrix for the i-th distributed entity. This counter refers to the number of
messages sent by entity j to entity k as the entity i knows it.

Logical clock matrix are useful in such cases in which a logical order has to
be established among messages from a distributed system, but the order among
messages is established on line, during the execution of the system, so in this
way, each process can maintain an incomplete list of messages, which are already
ordered. Using logical clock matrix method, each process can read the received
messages in the correct order. In our problem, i.e. to build a causality graph,
the algorithm that is in charge to order messages causally, works off line, i.e.
the algorithm starts to order messages when the MAS stops running. So in such
case, the algorithm will have all messages exchanged by agents in the system,
and using the vector clock method is sufficient to our requirements.

4 Causality Graphs as a Means to Track Multi-Agent
Interactions

Multiagent systems, are non-deterministic systems. The performance of each
agent will depend on the efficiency to manage internal and external events, i.e.
messages from other agents [10]. For this reason, analyzing agents interactions

194 G. Vigueras and J.A. Botia

is an important issue and delivers powerful information to the developer. This
information can be used to discover what is happening in the MAS. The most
widely used graphical representation for multi-agent interaction protocols, UML
sequence diagrams, shows the allowed sequence order among messages. However,
due to the particularities of such kind of diagram, it is difficult to find visually
any causal relation among messages.

To illustrate it, suppose a MAS, in which an agent delegates three tasks on
other agents. Each one of these agents represents different organizations, and
each one of them delegate tasks again to agents of their own organizations. To
decide which agent will perform each task, a negotiation is made using FIPA
Contract-net protocol [7]. If some agent reports a failure after performing some
task, a new negotiation will start to perform the failed task. Lets think, for
example, on A agent which delegates one task on B, C and D agents. After
elaborating proposals, C agent will be in charge to perform task T1 and D is
in charge to perform tasks T2 and T3. Suppose that C returns a failure when
performing task T1. This event generates a new negotiation to find an agent to
perform T1, among B, D and a recently created agent N. Figure 2 shows this

Fig. 2. UML sequence diagram which shows messages sent by agents. By means of this
diagram is complex to find causality among messages.

Tracking Causality by Visualization of Multi-Agent Interactions 195

Fig. 3. Causality graph corresponding to the example MAS. Nodes are agents instances
and edges are sent messages.

particular occurrence of the interaction protocol by means of a UML sequence
diagram, and figure 3, shows the causality graph for the same conversation.

In the sequence diagram of figure 2, to find and follow the trace of each
conversation among agents is not obvious. For this reason, finding the cause of
any error or some wrong agent behavior, could be a non trivial task for the
programmer. On the other hand, the diagram proposed in figure 3, is easier
to analyze. Assisted by the causality graph in figure 3, a developer can find
intuitively the cause why agent A rejects agent B proposal. Looking at the
message trace, a developer will find that proposal sent by agent B, depends on
proposals from agents E, F and G. In this way, to find the error, proposals from
those agents should be analyzed.

4.1 Definition of the Causality Graph for Multi-Agent Interactions

In this section we will formalize the causality graph for multi-agent systems
interactions. We will define, before interaction protocols, these other elements:
logical clocks, conversations, messages and agents.

196 G. Vigueras and J.A. Botia

Let n be the number of agents in a MAS2 and m the number of sent messages
in a given MAS execution. Let also d be the number of conversations found and
e the number of different interaction protocols of that set of conversations.

We will define a protocol as

P = {p1, p2, ..., pe | pi = (Q, I, q0, F, δ)},

where Q is the FSA’s3 states set, I is the input alphabet, composed by agents
interaction performatives defined by FIPA [6], q0 is the initial state, F is the
final states set and δ : Q×P → Q, is the transition function between states. We
define also a set of logical clocks as

L = {lc1, ..., lcm|lci = (x1, ..., xn) 1 ≤ i ≤ m and xj ∈ N}.

We need also to represent the whole set of agents involved in a MAS run, and
we will denote it as A = {a1, ..., an|n ∈ N}. Agents belonging to this set will be
involved in conversations in the run. Let

C = {c1, ..., cd|cj = (init, prot), init ∈ A, prot ∈ P}

be the set of conversations. Agents that belong to the same conversation will
use the same protocol. Each conversation has an initiator and one or many par-
ticipants depending on whether protocol’s conversation is simple or multiparty.
Elements from this set will be pairs, containing conversation initiator and con-
versation protocol. Finally, we will refer to the set of messages of the studied
run as M , where each element will be a 6-tuple as (s, r, lc, conv, prot, perf). The
first and second component reference, respectively, to message sender agent and
receiver agent, the third component is the logic clock stamped in the message,
fourth component is the conversation to which the message belongs to, fifth com-
ponent is the protocol used in message conversation and the last component is
the message performative.

Please, notice that cardinality of M and L sets will be the same, and between
both sets there will be a biunivocal relation (i.e. for each message there will be
only one logic clock and vice versa). Also, messages have been defined to build
a causality graph which maintains independence from the MAS platform used.
Thus, using examples of multi-agent platforms widely used like the ones that
appear in [2], a developer will be able to send agents messages containing almost
the 6-tuple related above. Another issue is that a messages set for a given MAS
execution, is partially ordered using logical clocks. In this way, let m1 be the
first message in the message set, which is not caused by other message. After
m1, all messages caused by it will appear. After those messages, other message
with no cause will appear denoted with mn, and after mn all messages caused
2 We assume that the number of agents is known in advance as we are considering the

case in which we are debugging the MAS, i.e. it is not in production mode. However,
this assumption does not imply any loss of generality.

3 We assume that any protocol might be formally defined with a Finite States
Automaton.

Tracking Causality by Visualization of Multi-Agent Interactions 197

by it. To understand it better, we refer to the messages order using the graph in
figure 3. For that graph, the first message in set M will be the one sent by agent
A to B with performative cfp. Following, messages sent by B to agents E, F
and G with performatives cfp will be inserted, (order among this three messages
is not important because they are concurrent). Following these three messages,
messages caused by those three messages will be added, and so on until insert
three reject-proposal messages sent by B to E, F and G. After those messages,
message sent by A to C, with performative cfp, will be added, and after it, all
messages caused by it, and so on until order all messages sent in the MAS. Order
described above is established, because algorithm to build causality graph need
to process MAS messages in sequential way. Thus, we finally define M as

M = {m1, ..., mm|mi = (si, ri, lci, convi, proti, perfi)},

and we have si, ri ∈ A, lci ∈ L , convi ∈ C, proti ∈ P and perfi ∈ I.
Now, we can define a causality graph for multi-agent systems interactions as

a graph G(V, E), where V = {(ag, inst)|ag ∈ A ∧ inst ∈ N} is the set of nodes
and E is the set of edges with E = {(sr, tg, m)|sr, tg ∈ V and m ∈ M}.

In multi-agent interactions causality graphs, there will be an edge for each
message, and a node for each message sender and receiver. If the receiver and
the sender of a message is the same agent, then both nodes will be joint in one.
This process is explained in the following section. Elements from V are pairs,
where the first component is an agent and the second component is a number to
identify different nodes of the graph which refer to the same agent (i.e. the same
agent sends different messages). Elements from set E, are 3-tuples. The first and
the second component are the source node and target node, respectively. Third
component is a label corresponding to the message sent.

4.2 Algorithm to Build the Graph

In this section we will define the algorithm to build a multi-agent interaction
causality graph. To simplify notation used, we will access each element compo-
nent from sets defined in previous section, by means of functions which have the
same name as the component to get. Thus, for example, to get the sender of
some message m we will use function s(m).

In this algorithm, we will need a function that, given a concrete message, it
delivers the cause message (i.e. the message which comes immediately before and
whose occurrence generated this one). Let it be denoted with Cause(m, M) for
a message m and a subset of messages M in which the cause should be located
at. It is possible that m does not have a cause (i.e. is the initial message of the
conversation). In this case, the function will return ⊥. To define the function,
the subset M ′′ is explained. Given a message m ∈ M ′, where M ′ is the messages
set of already processed messages (see algorithm 1), let be M ′′ ⊆ M ′, a messages
subset so that, m′ ∈ M ′′ iff lc(m′) < lc(m) ∧ r(m′) = s(m). Using this set,
Cause function is defined:

198 G. Vigueras and J.A. Botia

Cause(m, M
′′
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ M
′′

= ∅

m′ ∃m′ ∈ M ′′ |
lc s(m) − lc r(m′) = min

m′′∈M ′′
{lc s(m) − lc r(m′′)}

,

where lc s(m) and lc r(m) return the counter of the logical clock of m for sender
and receiver, respectively. Notice that this definition of Cause() function does
not consider explicitly that a message could have two messages or more as its root
cause (e.g. in a contract net like protocol, the reason for sending reject/accept
messages are the whole set of proposals received before). This is addressed in
the algorithm. See also the example exposed in section 4.3.

Another functionality needed is that which says if two messages m and m′ are
equivalent. This means that, if we look at the DFA which defines the states of
the protocol followed by the conversation, and interpret messages as tokens of the
input alphabet of the automaton, m and m′ generate transitions from the same
source state (e.g. accept-proposal and reject-proposalmessages are equiva-
lent messages for the contract net protocol). Hence, it is defined as follows:

Equivalent(m, m′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

true prot(m) = prot(m′) ∧ ∃q ∈ prot Q(m) |
prot δ(q, m) ∈ prot Q(m)∧
prot δ(q, m

′
) ∈ prot Q(m

′
)

false otherwise

,

where prot Q(m) and prot δ(q, m) return the set of states of the AFD which
model the protocol of the conversation in which m appears and the next state
starting from q and with m as input, respectively. These two functions are needed
to generate the next state of the automaton to advance in the generation of the
causality graph.

In a concrete situation of the algorithm (see algorithm 1), we will need the
node which already exists in the partial graph constructed, representing the
receiver of a message m′. This is needed when this message is the cause of
another message which we want to transform into an edge in the graph. Hence,
we define

GetTargetInstance(m′, E) = inst(tg(e)),

provided that there exists e ∈ E such that m(e) = m and we use m(e) to access
the labeling message of arc e in the graph.

When the algorithm is building the graph, it starts from the most recent mes-
sages (i.e. whose order is provided by the logical clocks) to the older ones. New
nodes of the graph means an agent sending and/or receiving a message. When we
need to create a new node for an agent and a message or messages sent by it, we
need the index of occurrence of the agent in the graph to correctly label the node.
We use for that the GetLastInstance() function, and we define it as

Tracking Causality by Visualization of Multi-Agent Interactions 199

GetLastInstance(a, V) =

⎧
⎪⎨

⎪⎩

max
v=(a,i)∈V

{inst(v)} + 1 ∃i|v = (a, i) ∈ V

0 otherwise

,

given that a is the agent and V is the set of nodes already added to the algorithm.
It will return 0 (the lowest index) if the agent was not already added.

When a new message has to be inserted in the graph, first thing we need to do
is locating the node in the graph from which the new arc derived from the message
will start. We will do this with GetSender function. It returns the right occurrence
of the agent which sends the message. It is defined for simple and multiparty con-
versations. In a multiparty conversation, the function joins, in the same source
node, all messages with equivalent performatives. It will be defined as:

GetSender(m
′
, m

′′
, E, V) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GetTargetInstance(m
′′
, E) m

′′
=⊥ ∧ ∃e ∈ E |
m(e) = m

′′

inst(sr(e)) ∃e ∈ E |
Equivalent(m(e), m′)∧
s(m(e)) = s(m

′
)∧

conv(m(e)) = conv(m
′
)

GetLastInstance(s(m′), V) otherwise

,

where m′ is the message to insert as an arc, m′′ is the cause of m′ and the pair E,
V , correspond to the graph partially constructed. When we try to locate the right
node in the graph to insert m′, we will find one among three different situations.
The first and most simple is that m′ is the root message of a conversation, hence
it has no cause, i.e. m′ =⊥. In this case, we simply generate a new node. In the
second case, m′ also has no cause, but the root node has been generated before
(by a previous call with another message equivalent to this, e.g. cfp messages in
the beginning of a contract net conversation). The function returns the instance
of the node. In the third case, the cause node exists, hence the function returns
the node of the graph in which the arc corresponding to m′′ ends.

If we need the target node of a message m′ in the graph, we also need the
source node of the same message. This is accomplished by GetReceiver. This
function works with simple and multiparty conversations among agents. In a
multiparty conversation, the function will join, in the same target node, all
messages with equivalent performatives. Thus, the target node corresponding to
message m′, given as argument, will be a node that already exists in the graph.
If that node does not exist, a new node will be created:

GetReceiver(m
′
, E, V) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inst(tg(e)) ∃e ∈ E |
Equivalent(m(e), m′)∧
r(m(e)) = r(m′)∧
conv(m(e)) = conv(m

′
)

GetLastInstance(r(m
′
), V) otherwise

200 G. Vigueras and J.A. Botia

Algorithm 1. Algorithm for the generation of a multi-agent interaction causal-
ity diagram

1: Build Graph(M,∅,∅); {Algorithm invocation}
2: Build Graph(M,V ,E){ {Algorithm definition}
3: M

′ ← ∅
4: m ← next(M);
5: while m �=⊥ do
6: let m

′
be ∈ M ∪ {⊥}

7: let source, target be ∈ V

8: m
′ ← Cause(m,M

′
);

9: if (init(conv(m)) = s(m)) then {m’s sender is conversation’s
initiatior}

10: source ← (s(m), GetSender(m, m
′
, E, V));

11: target ← (r(m), GetLastInstance(r(m), V));
{Source and target node are created to the new edge that
will be inserted, when s(m) is conversation’s initiator}

12: else {m’s sender is conversation’s participant}
13: source ← (r(m

′
),GetTargetInstance(m

′
, E));

14: target ← (r(m), GetReceiver(m, E,V));
{Source and target node are created to the new edge that
will be inserted, when s(m) is conversation’s participant}

15: end if
16: if source /∈ V then
17: V ← V ∪ {source};
18: end if
19: if target /∈ V then
20: V ← V ∪ {target};
21: end if
22: M ← M − m;
23: M

′ ← M
′ ∪ {m};

24: E ← E ∪ {(source, target,m)};
25: m ← next(M);
26: end while
27: }

Finally, the global procedure is algorithm 1. Initially, E and V sets for arcs
and nodes, respectively, are empty. M ′ is the set of messages, already added to
the graph and, hence, can be cause of another message. The next() function is
used to obtain the next message of an ordered set of messages.

4.3 An Example

We will illustrate how the algorithm works with an example. Suppose that
we execute a MAS, and from this run we obtain the list of ordered messages
which appear in table 1. They correspond to a contract net based conversation

Tracking Causality by Visualization of Multi-Agent Interactions 201

Fig. 4. Causality graph corresponding to messages set showed in table 1

Table 1. Messages set, for a conversation using contract-net protocol

Index (sender, receiver, clock, conv., protocol, performative)
1: (a, b, [1, 0, 0, 0], c1, p1, cfp)
2: (a, c, [1, 0, 0, 0], c1, p1, cfp)
3: (a, d, [1, 0, 0, 0], c1, p1, cfp)
4: (b, a, [1, 1, 0, 0], c1, p1, propose)
5: (c, a, [1, 0, 1, 0], c1, p1, propose)
6: (d, a, [1, 0, 0, 1], c1, p1, refuse)
7: (a, b, [2, 1, 0, 0], c1, p1, accept − proposal)
8: (a, c, [2, 0, 1, 0], c1, p1, reject − proposal)
9: (b, a, [2, 2, 0, 0], c1, p1, inform)

between agents a (the initiator) and b, c and d (the participants). For this list,
the causality graph is shown in figure 4.

From now on, we will refer to each message using letter ’m’ and the number
of message , i.e. m1 to message 1 and so on. Thus, firstly, m1 is processed.
Given that m1 is the first, it does not have a cause, so a new node instance
for agent a will be created (i.e. node (a, 0)). To get target node of m1, a new
instance of agent b will be created (node (b, 0)). After that, m2 is processed, and
it does not have a cause either, so a message with equivalent performative will
be searched in already built graph. Because m1 (which belongs to already built
graph) has equivalent performative to m2, the source node for both messages
will be the same (node (a, 0)). The target node of m2 will be a new node instance
of agent c (node (c, 0)). For m3, the same steps like for m2 will be done. When
m4 is processed, the target node of its cause message (m1) will be chosen as
source node of m4. The built process will choose m1 as m4’s cause, because
m1 accomplish restrictions established by function Cause (see function Cause
definition).To get the target node of m4, a new instance of agent a (node (a, 1))

202 G. Vigueras and J.A. Botia

will be created, because agent a did not receive messages yet. For m5, the target
node of its cause message (m2) is selected as source node, but now the target
node of m5 will be the same like for m4, because in both messages the receiver
is initiator’s conversation (agent a). The same steps like in the case of m5 are
done to find source and target nodes of m6. The rest of the graph is built in a
similar fashion.

This algorithm and the mechanism to get an ordered sequence of messages by
logical clocks have been implemented and tested ACLAnalyser4 [3]. Figure 5 is
a capture (on the left of the figure) and a detail of the capture (on the right).
It corresponds to the MAS example described in section 4. The detail includes

Fig. 5. Causality graph implemented in ACLAnalyser

a simple conversation among three agents. Looking at the detail, the developer
can deduce the causes that agent B (node instance 2, i.e. B,2) has sent three
reject-proposal to their interlocutors and that negotiation between A and B
does not finish right. Tracking back in the graph, the developer can realize that
B receives another reject-proposal from agent A. The cause of this rejection
is the proposal sent by B to A, and the origin of this proposal is the set of three
proposals received by agent B (node instance 1, i.e. B,1). So developer should
review which are those proposals to know the reason why are rejected.

5 Related Works

Causality graphs were proposed more than a decade ago in the context of mon-
itoring and debugging concurrency in distributed processes in a distributed op-
erating system [5]. In the form it appears in that work, it is not very useful as
it is, if we want to use it in the MAS debugging arena. We have extended the
idea by incorporating the concept of interaction protocol, conversation and per-
formative. Also, the algorithm to construct this different kind of causality graph
is new.
4 http://aclanalyser.sourceforge.net

Tracking Causality by Visualization of Multi-Agent Interactions 203

Related with caused based graphs used in multi-agent systems, in [10] is pro-
posed a graph in which, developer defines agent concepts and causal relation
among those pre-defined concepts is shown (e.g. a believe created as a conse-
quence of a received message). This work is complementary to our, because the
caused graph is at intra-agent level an not inter-agent level.

Using visualization tools to assist in testing and debugging MAS software has
been previously explored by the authors in previous works [9]. Simple communi-
cation graphs are used there, i.e. nodes are agents and arcs exits between nodes
if they exchanged any message. However, when these communication graphs get
so complex to be visualized (i.e. many agents and many arcs), a simplification
process based on clustering is used to group agents. Different criteria are used
to decide on the grouping.

An interesting work about visualizing multi-agent system is that done by
Schroeder et al. [15]. It represents a multi-agent system in a 3D world, in which
distances between agents are directly related with similarity. In this way, one
can, at a glimpse, know which agents show a similar behavior (when they are
near in the 3D space).

Keeping the attention on visualization tools for MAS, other interesting ex-
ample is the one presented in [12]. In this case, the developer can use different
kinds of visual diagrams. For example, Gantt diagrams show decomposition,
dependency and ordering among agents tasks.

6 Conclusions

In this paper, a new visual element aimed to aid the developer in MAS testing,
verification and validation tasks is proposed, showing an abstract view of the
MAS, which allow a deeper and quick understanding of system behaviour. To
build this kind of graph, we address the problem of logical ordering of events in
a distributed system. Also, we propose an algorithm to build the whole graph.
We show with examples that this kind of diagrams are easy to understand,
even more than sequence diagrams when one wants to study causality relations.
Details about performance and algorithm analysis will be provided elsewhere.

We keep working on different methods to obtain information about MAS
through elaborated queries directed to the causality graph in order to reinforce
visual validation and verification. To put it simple, to aid the developer to infer
more conclusions about MAS behaviour. This will be useful in systems with
many agents, in which trying to visualize any situation can be unaffordable.

Acknowledgements

This research work is supported by the Spanish Ministry of Education and Sci-
ence in the scope of the Research Project TIN-2005-08501-C03-02.

204 G. Vigueras and J.A. Botia

References

1. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agentspeak
2. Bordini, R.H., Dastani, M., Dix, J., EI Fallah-Seghrouchni, A. (eds.): Multi-Agent

Programming: Languages, Platforms and Applications. In: Multiagent Systems,
Artificial Societies, and Simulated Organizations, vol. 15. Springer, Heidelberg
(2005)

3. Botia, J.A., Hernansaez, J.M., Gomez-Skarmeta, A.F.: Towards an approach for
debugging mas through the analysis of acl messages. Computer Systems Science
and Engineering (July 20, 2005)

4. De Wolf, T., Holvoet, T.: Towards a methodology for engineering self-organising
emergent systems. Self-Organization and Autonomic Informatics 135, 18–34 (2005)

5. Dror Zernitk, M.S., Malki, D.: Using visualization tools to understand concurrency.
IEEE Softw 9, 87–92 (1992)

6. FIPA. Fipa acl message structure specification. Technical report, FIPA (2002)
7. FIPA. Fipa contract net interaction protocol specication. Technical report, FIPA

(2002)
8. Garg, V.K.: Concurrent and Distributed Computing in Java. Wiley, IEEE Press

(2004)
9. Botia, J.M.H.J.A., Gomez-Skarmeta, A.F.: On the application of clustering tech-

niques to support debugging large-scale multi-agent systems. In: Programming
Multi-Agent Systems Workshop AAMAS, Hakodate, Japan (2006)

10. Lam, D.N., Barber, K.S.: Comprehending agent software. In: AAMAS 2005: Pro-
ceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pp. 586–593. ACM Press, New York (2005)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

12. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging
distributed multi-agent systems. In: ACM Press (ed.) AGENTS 1999: Proceedings
of the third annual conference on Autonomous Agents, pp. 326–333 (1999)

13. Raynal, M., Singhal, M.: Logical time: Capturing causality in distributed systems.
Computer 29(2), 49–56 (1996)

14. von Staa Roberta Coelho, A., Kulesza, U., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: SELMAS 2006: Proceedings of the
2006 international workshop on Software engineering for large-scale multi-agent
systems, pp. 83–90. ACM Press, New York (2006)

15. Schroeder, M., Noy, P.: Multi-agent visualisation based on multivariate data. In:
Proceedings of the Fifth International Conference on Autonomous Agents, Mon-
treal, Canada, ACM Press, New York (2001)

Hybrid Multiagent Systems with Timed
Synchronization –

Specification and Model Checking�

Ulrich Furbach1, Jan Murray1, Falk Schmidsberger2, and Frieder Stolzenburg2

1 Universität Koblenz-Landau, Artificial Intelligence Research Group, D-56070 Koblenz
{uli,murray}@uni-koblenz.de

2 Hochschule Harz, Automation and Computer Sciences Department
D-38855 Wernigerode

{fschmidsberger,fstolzenburg}@hs-harz.de

Abstract. This paper shows how multiagent systems can be modeled by a com-
bination of UML statecharts and hybrid automata. This allows formal system
specification on different levels of abstraction on the one hand and express-
ing real-time system behavior with continuous variables on the other hand. It
is shown, how multi-robot systems can be modeled by hybrid and hierarchical
state machines and how model checking techniques for hybrid automata can be
applied. An enhanced synchronization concept is introduced that allows synchro-
nization taking time and avoids state explosion to a certain extent.

1 Multiagent Systems

Specifying behaviors for (physical) multiagent and multi-robot systems is a sophisti-
cated and demanding task. Due to the high complexity of the interactions among agents
and the dynamics of the environment the need for precise modeling arises. Since the
behavior of agents usually can be understood as driven by external events and internal
states, an obvious way of modeling multiagent systems is by state transition diagrams.
Hierarchical state transition diagrams like statecharts are particularly well suited as they
allow the specification of behaviors on different levels of abstraction [9]. They can di-
rectly be used as executable specifications for programming multiagent systems [1].

One important aspect of physical agents and robots is that they interact with a (possi-
bly simulated) physical environment. Such interactions typically consist of continuous
actions (e.g. the movement of a robot) and perceptions like the power status of a bat-
tery. Classical state transition diagrams are not well suited for modeling this, because
the transitions between states are discrete. However, continuous extensions to these for-
malisms have been proposed, e.g. hybrid automata [6].

Especially for agents employed in safety critical environments, e.g. in rescue scenar-
ios, behavior specification has to be done very carefully in order to avoid side effects
that may have unwanted or even disastrous consequences. One approach to realizing

� This research is supported by the grants Fu 263/8 and Sto 421/2 from the German research
foundation DFG within the special priority program 1125 on Cooperating Teams of Mobile
Robots in Dynamic Environments.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 205–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

206 U. Furbach et al.

the required clarity of a specification is the use of formal design methods. Fortunately,
many state transition diagram dialects like hybrid automata are equipped with a for-
mal semantics that makes them accessible to formal validation of the modeled behav-
ior. Thus it becomes possible to (semi-)automatically prove desirable features and the
absence of unwanted properties in the specified behaviors, e.g. with model checking
methods.

2 Hybrid Hierarchical State Machines

In this section, we present the combination of two concepts: hierarchical statecharts and
hybrid automata. As a running example, we use a scenario from the RoboCup rescue
simulation league, which is shortly described in the following subsection. The RoboCup
initiative (official homepage of the RoboCup Federation: www.robocup.org) aims at
fostering research in robotics, artificial intelligence, and multiagent systems. As one ex-
ample domain robotic soccer has been chosen, because soccer combines many interest-
ing problems, e.g. dealing with uncertain and incomplete information, cooperation and
coordination in a team of autonomous agents, decision support in multiagent systems,
or planning and acting in a highly dynamic environment. Annual world competitions
and a number of local events provide benchmarks and opportunity to present results of
current research. RoboCup is divided into several leagues, which focus on different re-
search aspects. The simulation league deals with aspects of situated multiagent systems
like teamwork, spatial reasoning, decision making, and opponent modeling. There are
also non-soccer leagues, e.g. the so-called rescue leagues (see next section).

2.1 Rescue Scenario

In the RoboCup rescue simulation league [19], a large scale disaster is simulated. The
simulator models part of a city after an earthquake. Buildings may be collapsed or on
fire, and roads are partially or completely blocked. A team of heterogeneous agents
consisting of police forces, ambulance teams, a fire brigade, and their respective head-
quarters is deployed. The agents have two main tasks, namely finding and rescuing
blocked civilians and extinguishing fires. An auxiliary task is clearing of obstructed
roads, such that agents can move smoothly. As their abilities enable each type of agent
to solve only one kind of task (e.g. fire brigades cannot clear roads or rescue civilians),
the need for coordination and synchronization among agents is obvious.

Consider the following simple scenario. If a fire breaks out somewhere, a fire brigade
agent is ordered by its headquarters to extinguish the fire. The fire brigade moves to the
fire and begins to put it out. If the agent runs out of water it has to refill its tank at a
supply station and return to the fire to complete its task. Once the fire is extinguished,
the fire brigade agent is idle again. An additional task the agent has to execute is to
report any injured civilians it discovers. Part of this scenario is modeled in Fig. 1 with
the help of a hierarchical hybrid automaton [10]. In addition to the fire brigade agent
the model should include a fire station, fire and civilians as part of the environment; all
this will be explained in a subsequent section (cf. Fig. 2).

Hybrid Multiagent Systems with Timed Synchronization 207

listen
help

idle move2firemove2supply

refill

extinguish

FirebrigadeMain
FirebrigadeAgent

FirebrigadeRSS

i: true

civ > 0/
civ′ = civ−1

i: m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

wLevel = wlMax ∧neededw > 0 /
m2ftime′ = tSupply

i: wLevel ≥ 0
f: ˙wLevel = −rExt

˙neededw = −rExt
wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported

emergency

true /m2ftime′ = 3

wLevel = wlMax ∧neededw = 0

neededw = 0∧wLevel > 0

i: true true /civ′ = civ +1

Fig. 1. A simple fire brigade agent

States are represented as rectangles with rounded corners and can be structured hi-
erarchically. The specification of the fire brigade is a simple hierarchical chart, con-
sisting of the main control structure (FirebrigadeMain) and a rescue sub-system (Fire-
brigadeRSS) which are supposed to run in parallel. The latter just records the detected
civilians, which are not modeled in Fig. 1 (for this, see the sub-state Civilians in Fig. 2
later in the text). FirebrigadeMain consists of five sub-states corresponding to move-
ments (move2fire, move2supply), extinguishing (extinguish), refilling the tank (refill),
and an idle state (idle). The agent can report the discovered civilians when it is in its
idle state. Details from this figure will be explained in the course of this section.

It should be obvious already in this stage, that even in this simple case with few
components and a deterministic environment it is difficult to see if the agent behaves
correctly. Important questions like “does the fire brigade try to extinguish without wa-
ter?” or “will every discovered civilian (and only those) be reported eventually?” depend
on the interaction of all components and cannot be answered without an analysis of the
whole system. We will come back to these questions in Sect. 4.1.

2.2 State Hierarchies and Transitions

Statecharts are a part of UML [12,13] and a well accepted means to specify dynamic
behavior of software systems. The main concept for statecharts is a state, which cor-
responds to an activity or behavior of a robot or agent. Statecharts can be described in
a rigorously formal manner [1,14], allowing flexible specification, implementation and

208 U. Furbach et al.

analysis of multiagent systems [9,18] which is required for robot behavior engineering
and modeling and simulating complex robots.

Definition 1 (basic components). The basic components of a state machine are the
following disjoint sets:

S: a finite set of states, which is partitioned into three disjoint sets: Ssimple, Scomp,
and Sconc — called simple, composite and concurrent states, containing one des-
ignated start state s0 ∈ Scomp ∪Sconc, and

X: a finite set of (real-numbered) variables.

In our running example, idle, extinguish or listen are simple states, and Firebri-
gadeAgent is a concurrent state and FirebrigadeMain and FirebrigadeRSS are com-
posite states, called regions in this case, which are separated by a dashed line. m2ftime
and wLevel are examples for real-valued variables.

In statecharts, states are connected via transitions in T ⊆ S × S, indicating that an
agent in the first state will enter the second state. Transitions are drawn as arrows labeled
with jump conditions over the variables in X together with actions. For example, the
transition from idle to itself is labeled with civ > 0/civ′ = civ − 1, with the meaning: if
the value of civ is greater 0, then the action civ′ = civ − 1 is executed while performing
the transition, i.e., the number of civilians that are found but not reported is decreased
in this case.

The label reported at the same transition is used for synchronizing the transition with
another automaton working in parallel, namely the one for Firestation (see Fig. 2). It is
only legal for the combined system if both automata take the transition labeled reported
at the same time. See [6] for details. In principle, the explicit use of events and actions as
in UML statecharts is not needed, as both can be expressed with the help of variables.
For example the occurrence of an external event can be represented by changing the
value of the corresponding variable from 0 to 1.

Since hybrid automata [6] are akin to statecharts, it makes sense to combine the ad-
vantages of both models. Statecharts have the clear advantage of allowing hierarchical
specification on several levels of abstraction, while hybrid automata enable the intro-
duction of continuous variables and flow conditions. This extension of statecharts is
done by the subsequent definition. Hybrid automata are widely used for the specifica-
tion of embedded systems. By reachability analyses, diagnosis tasks can be solved. We
will come back to this in Sect. 4.

Definition 2 (jump conditions, flows and invariants). In addition to the variables in
X, we introduce new variables ẋ (first derivatives during continuous change) and x′

(values at the conclusion of discrete change) for each x ∈ X, calling the corresponding
variable sets Ẋ and X ′, respectively. Then, each transition in T may be labeled by a
jump condition, that is a predicate whose free variables are from X ∪X ′, which can be
split into activation condition and effect. In addition, each state s ∈ S is labeled with
a flow condition (f:), whose free variables are from X ∪ Ẋ, and an invariant (i:), whose
free variables are from X. Flow conditions may be empty and hence omitted, if nothing
changes continously in the respective state.

In our example we use the dotted variable ˙wLevel to denote the change of the water level
in the state refill. A transition from this state to the state move2fire is performed, if the

Hybrid Multiagent Systems with Timed Synchronization 209

water level reached the maximum (wLevel = wlMax) and water is needed (neededw >
0). During the transition the action m2ftime′ = tSupply is executed.

We will restrict our attention to linear conditions, i.e. linear equalities and inequali-
ties among either ordinary variables in X ∪ X ′ or their first derivatives Ẋ, because only
then an exact reachability analysis (needed for model checking) is feasible [4,6]. Let us
now have a closer look at states. Following the lines of [12,13], we define the hierarchi-
cal structure of statecharts as follows.

Definition 3 (state hierarchy). Each state s is associated with zero, one or more initial
states α(s): a simple state has zero, a composite state exactly one, and a concurrent
state more than one initial state. Furthermore, each state s ∈ S\{s0} belongs to exactly
one state β(s) different from s. It must hold β(s) ∈ Scomp ∪ Sconc. If β(s) ∈ Sconc,
then s ∈ Scomp, which implies that a concurrent state must not be directly contained in
another concurrent state, as they could be merged into a single concurrent state in this
case. s is called region of β(s) then and may have a cardinality greater than one. We
assume that transitions keep to the hierarchy, i.e., if sT s′ holds, then β(s) = β(s′).

In Fig. 1 we see that the start state s0 is FirebrigadeAgent, a concurrent state. It rep-
resents the multiagent system, consisting of an agent FirebrigadeMain and Firebri-
gadeRSS. Both are realized as regions, which are separated by dashed lines (in the
case of heterogenous agents), and each has cardinality one. The entire rescue scenario,
which we will also use for model checking later on is depicted in Fig. 2; besides the
fire brigade we additionally have concurrent regions with states for Fire, Civilians and
Firestation.

FirebrigadeAgent

Fire

w = 0/w′ = 10

help

injured
w = 10

f: ẇ = −1
i: w ≥ 0

idle assignFB

i: true i: false

burn

emergency
reported

Civilians

Firestation

Firebrigade

Rescuescenario

burn

no fire

boom = 0 f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0
i: neededw > 0

neededw = 0

f: ˙boom = 0
i: true

put out

Fig. 2. A simple scenario from the RoboCup rescue simulation. The state FirebrigadeAgent cor-
responds to the one shown in Fig. 1. The icon ⊂⊃−⊂⊃ hints at the hidden sub-states.

210 U. Furbach et al.

2.3 State Trees and Configurations

The function β (see Def. 3) naturally induces a state tree with s0 as root. This is shown
for the running example in Fig. 3. Here, regions with cardinality greater than one must
be treated as multiple composite states, which are distinguished by different indices.
However, while processing, each region or composite state of the state machine contains
only one active state. These states also form a tree, called configuration. A configuration
of the given state machine, is indicated by the thick lines in Fig. 3. Let us now define
the notion of configuration more formally.

FirebrigadeMain FirebrigadeRSS

FirebrigadeAgent

extinguishmove2fireidle listenrefillmove2supply

Fig. 3. State hierarchy and configuration tree (thick lines)

Definition 4 (configuration). A configuration c is a rooted tree of states, where the
root node is the topmost initial state of the overall state machine. Whenever a state s is
an immediate predecessor of s′ in c, it must hold β(s′) = s.

A configuration must be completed by applying the following procedure recursively
as long as possible to leaf nodes: if there is a leaf node in c labeled with a state s, then
introduce all α(s) as immediate successors of s.

3 Synchronization and Cooperation

The overall performance of programmed multiagent systems heavily depends on how
cooperative agents behave. Cooperation and coordination of agents can be achieved by
synchronization. Hence, it is essential to implement synchronization effectively. Syn-
chronization means, that several actions must start or happen at the same time. In the
rescue scenario (see Sect. 2), transition labels serve as triggers for synchronization in
the formalism of hybrid automata, e.g., if an injured civilian cries for help, then the
listening fire fighter hears this. However, if more complicated coordination and coop-
eration among agents has to be expressed, then this simple concept of synchronization
may not suffice. In the following, we will therefore introduce an enhanced concept of
synchronization (see [10,11]), which we motivate with an example from the robotic
soccer domain.

3.1 An Example of Coordination in Robotic Soccer

Since (robotic) soccer is a team sport, cooperation of agents is essential. Clearly, it is
not a good idea that all players try to get the ball at the same time. At best, exactly one
player goes to the ball, while the others try to position themselves as good as possible
on the pitch.

Hybrid Multiagent Systems with Timed Synchronization 211

Fig. 4 shows the statechart for two players trying a coordinated behavior of going
to the ball. To realize this behavior, the positions of two players, the ball, an opponent
and the opponent goal are modeled. The positions are described as two-dimensional
vectors v =

(x
y

)
. Components are accessed via the point notation, e.g. v.x. Constant

names start with capital letters, variables with lower case letters. There are variables
for the global, real ball position bR (initially

(80
60

)
), the local ball position b mea-

sured by each player, global positions of the players 1 and 2 (initial values p1 =
(0

60

)
,

p2 =
(0
−60

)
), the local position of the player p and his teammate pT and some con-

stants for the global position of the (stationary) opponent PO =
(110
−30

)
, and the opponent

goal POG =
(Field.x

0

)
. Additionally there is the field size Field. The field reaches from

−Field to +Field. Further there is the measurement error ME = 2 of the players, the
range DHB = 5 within which a player is assumed to be controlling the ball, and some
scale factors F01 = 0.1, F02 = 0.5, F03 = 0.3, F04 = 0.6. To access a local value,
the path over the states to the value is used. For instance, the local position of player
1 is soccer.teamplay.player1.p with the initial value p1 and the local position of his
teammate is soccer.teamplay.player1.pT with the initial value p2.

The composite state soccer contains the concurrent state teamplay as initial state and
the simple state fail. There is only one transition from teamplay to fail, and fail can only
be entered, if the invariant of teamplay is false and the guard of the transition is true. In
this case, the ball has to be out of the bounds of the field. Note that the synchronization
variable ball and the invariant beside it belong to teamplay.

The behavior of the two players is modeled in the regions player inside of teamplay,
which is a concurrent state with two regions: one for each of the two players. But since
both players obey in principle the same specification, i.e., we have a homogeneous agent
system, we express this by cardinality markers in the upper right corner of a region. If
the cardinality is one, the marker may be omitted. The initial state of player is free
(running freely) with the following behavior. The player moves to an optimal position
related to POG, PO and pT (state walk). If he is in an optimal position, he waits for
the ball passed from the teammate (state stand). Otherwise he moves on. If the player
is closer to the ball than his teammate, his state is changing from free to gotoBall. The
flow condition inside gotoBall is modeling the movement of the player to reach the ball
position. If his teammate gets closer to the ball, the player will fall back to the state
free. Otherwise, if his distance to the ball becomes less than DHB, his state changes
to gotoWithBall. Inside gotoWithBall, the following behavior is modeled. The player
dribbles the ball to an optimal position related to PO, pT and the center in front of the
opponent goal (state walk). If he is in an optimal position, he waits (state stand) with
the ball to pass to the teammate or to kick to the goal, otherwise he moves on. There are
3 transitions out of gotoWithBall. If the distance to the ball becomes greater than DHB,
the player loses the ball (state lostBall) and changes further to free. If p, PO and pT are
optimal for a pass, the player will kick the ball to his teammate (state kickToTeamMate)
and changes to free. If p and PO are optimal in front of the opponent goal, the player
will kick the ball to the opponent goal (state kickToGoal) and afterwards he changes to
free. The flow conditions of the last 3 states are omitted for a better clarity of the figure.

In this example, coordination is really important. Here, in contrast to simple synchro-
nization mechanisms, coordination may take some time. The time between deciding to

212 U. Furbach et al.

∧||p−pT|| > F02 ·Field.y)

¬(F03 ·Field.x > p.x
∧||p−PO|| > F03 ·Field.yf: ṗ = F01 · (POG−PO

+F02 · (p−pT))

i: F03 ·Field.x > p.x
∧||p−PO|| > F03 ·Field.y
∧||p−pT|| > F02 ·Field.y

ball:1

i: F03 ·Field.x > p.x
∧||p−PO|| > F03 ·Field.y
∧||p−pT|| > F02 ·Field.y
∧|p.y| ≤ F02 ·Field.y

stand

∧||p−pT|| > F02 ·Field.y
∧F03 ·Field.x > pT.x
||pT−PO|| > F03 ·Field.y

∧|p.y| < F02 ·Field.y
∧F03 ·Field.x > p.x
||p−PO|| > F03 ·Field.y

∧||p−PO|| > F03 ·Field.y
∧||p−pT|| > F02 ·Field.y
∧|p.y| ≤ F02 ·Field.y)

¬(F03 ·Field.x > p.x

∧|p.y| ≤ F02 ·Field.y

∧||p−PO|| > F03 ·Field.y
∧||p−pT|| > F02 ·Field.y

F03 ·Field.x > p.x

f: p.ẋ = F01 · (Field.x−PO.x+F02 · (p.x− pT.x))
∧ p.ẏ = F01 · (−F04 · p.y+ p.y−PO.y

+F02 · (p.y− pT.y))
∧bR = p

i: ¬(F03 ·Field.x > p.x ∧ |p.y| ≤ F02 ·Field.y

∧||p−pT|| > F02 ·Field.y)
∧||p−PO|| > F03 ·Field.y

∧¬(F03 ·Field.x > pT.x
∧||pT −PO|| > F03 ·Field.y
∧||p−pT|| > F02 ·Field.y)

∧||p−PO|| > F03 ·Field.y
∧¬(F03 ·Field.x > p.x

∧|p.y| < F02 ·Field.y)

i: ||p−b|| ≤ DHB

fail i: true

soccer

teamplay

player 2

free

stand

walk

i: ¬(F03 ·Field.x > p.x

∧||p−pT|| > F02 ·Field.y)
∧||p−PO|| > F03 ·Field.y

F03 ·Field.x > p.x
∧||p−PO|| > F03 ·Field.y
∧||p−pT|| > F02 ·Field.y

||p−b|| > DHB

i: ||p−b|| > ||pT −b||

||p−b|| > ||pT−b||||p−b|| ≤ ||pT−b||

f: ṗ = F01 · (p−b)

||p−b|| ≤ DHB

111

gotoWithBall

1

walk

gotoBall

kickToGoal

i: true

kickToTeammate

lostBall

i: true

i: true

i: ||p−b|| > DHB ∧ ||p−b|| ≤ ||pT−b||

Field.x < |bR.x|∨Field.y < |bR.y|

f: ||bR−b|| ≤ ME

i: Field.x ≥ |bR.x|∧Field.y ≥ |bR.y|

Fig. 4. Robotic soccer example

Hybrid Multiagent Systems with Timed Synchronization 213

go to the ball and actually reaching it will almost always be greater than zero. Thus, we
must be able to distinguish between the allocation and the occupation of a resource (e.g.
the ball) in our specification formalism. In addition, since coordination may take some
time, we associate the new synchronization method with states and not with transitions.
All this is comprised in the concept of timed synchronization introduced next.

3.2 Timed Synchronization

Usually the so-called synchrony hypothesis is adopted for state machines, assuming that
the system is infinitely faster than the environment and thus the response to an exter-
nal stimulus (event) is always generated in the same step that the stimulus is introduced.
However in practice, synchronization and coordination of actions cannot be done in zero
time. In UML 1.5 [12], synchronization is present, but assumed to take zero time. In
UML 2.0 [13] there does not seem to be a special synchronization mechanism available
any longer except by join and fork transitions. Hence, it seems to be really worthwhile
considering synchronization and coordination in more detail, because it is needed for
multiagent systems. For this, we will introduce synchronization points which are asso-
ciated with states, i.e. activities that last a certain time, and not with transitions (as in
UML 1.5), because the transition from one state to another takes zero time according to
the synchrony hypothesis.

Definition 5 (synchronization points). A synchronization point (represented as oval)
allows the coordinated treatment of common resources. It can be identified by special
synchronization variables x ∈ Xsynch ⊆ X with a given maximal capacity C(x) > 0.
Each such point may be connected with several states. We distinguish two relations:
R+ ⊆ S × Xsynch and R− ⊆ Xsynch × S, both represented by dashed arrows in the
respective direction. Further, each connection in R+ ∪ R− is annotated with a number
m with 0 < m ≤ C(x).

As just said, according to the previous definition, synchronization is connected to states
and not to transitions as in UML 1.5. In consequence, it is now possible that synchro-
nization may take some time as desired. The process of synchronization starts when a
state s connected to a synchronization variable x is entered, and it ends only after some
time when s is exited. Therefore, we distinguish the allocation of (added or subtracted)
resources and their (later) actual occupation by additional variables x+ and x− (used
during the allocation phase) in each synchronization point. Hence, for each x ∈ Xsynch,
x+ and x− must be added to X.

In the following, we write αn(s) or βn(s) for the n-fold application of α or β to s,
in particular, α0(s) = β0(s) = s. Let us now have a closer look at variables. Variables
x ∈ X may be declared locally in a certain state γ(x) ∈ S. A variable x ∈ X is valid in
all states s ∈ S with βn(s) = γ(x) for some n ≥ 0, unless another variable with the same
name overwrites it locally. All synchronization variables and their relatives are global in
principle. Nevertheless, we associate synchronization points identified by the variable
x with the state γ(x) where it is declared; γ(x) must be a concurrent state in this case.
Therefore we assume, that for all states s connected to x, i.e. sR+x or xR−s, it must
hold βn(s) = γ(x) for some n ≥ 0, and all s′ between s and γ(x) in the state tree must be
composite states.

214 U. Furbach et al.

Definition 6 (transition types). Let x be a synchronization variable introduced at γ(x)
and s be a state connected with x. Then, s1T s2 is called incoming transition for s iff
αn(s2) = s for some n ≥ 0. It is called initializing, if it is an incoming transition with
αn(s2) = γ(x) for some n ≥ 0. s1T s2 is called an outgoing transition for s iff s1 = βn(s)
for some n ≥ 0, where s1 occurs in the actual configuration tree and x is valid in s. It
is called successful, if it is an outgoing transition with s = s1 and not marked with a
crossed box �; otherwise, it is called failed.

Note that outgoing transitions cannot be characterized statically by the state hierarchy,
but by the actual configuration tree. For the ease of presentation, we assume that there
is a special start transition leading to s0, annotated with a given initial condition of the
whole state machine. For this, an artificial new start state may be introduced.

Definition 7 (synchronization constraints). Synchronization points impose additional
constraints to the transitions that are incident with states s, the synchronization vari-
ables x are connected to.

1. If sR+x with annotation m, then
(a) x + x+ + m ≤ C(x) and x′

+ = x+ + m are added to all not initializing incoming
transitions,

(b) x′ = 0,x′
+ = 0,x′

− = 0 are added to all initializing incoming transitions,
(c) x′

+ = x+ − m is added to all outgoing transitions, and
(d) x′ = x + m is added to all successful outgoing transitions supplementarily.

2. If xR−s with annotation m, then
(a) x − (x− + m) ≥ 0 and x′

− = x− + m are added to all not initializing incoming
transitions,

(b) x′ = 0,x′
+ = 0,x′

− = 0 are added to all initializing incoming transitions,
(c) x′

− = x− − m is added to all outgoing transitions, and
(d) x′ = x − m is added to all successful outgoing transitions supplementarily.

In Fig. 4, coordination is achieved by the synchronization variable ball. It has capacity
1, because obviously there is only one ball in a soccer game, and it is introduced in
the concurrent state teamplay, i.e. γ(ball) = teamplay. The gotoBall state is positively
connected to it, while the states kickToGoal, kickToTeammate, and lostBall are nega-
tively connected to it. This means, that the ball resource is allocated during the gotoBall
activity and deallocated after a kick. Concerning the gotoBall state, the transition anno-
tated with ||p − b|| ≤ ||pT − b|| is an incoming transition. The transition marked with
||p − b|| ≤ DHB is successfully outgoing, while the transition marked with a crossed
box is failed. Since the state gotoBall directly belongs to the region player, there are no
other (indirect) incoming or outgoing transitions.

The method of timed synchronization is also applicable for the implementation of
a commitment-strategy in BDI-agents [15]. There, parallel (partial) plans could be
coordinated with a synchronization variable execution. At first, the agent has to revise
his intentions, to select executable plans. Each plan is divided in three parts (states). The
agent prepares the save plan execution in the first state. In the second state, the plan to
reach the (partial) goal, is executed and in the last state concluding actions are possible.
The synchronization variable is allocated during the execution of the first part of a plan

Hybrid Multiagent Systems with Timed Synchronization 215

and deallocated after the third part. After each (partial) plan execution, the agent has to
revise his intentions and the next plan can be executed.

3.3 Operation of Hybrid State Machines

The state machine starts with the initial configuration, that is the completed topmost
initial state of the overall state machine. In addition, an initial condition must be given,
that is a predicate with free variables from X ∪ Ẋ. The current situation of the multia-
gent system can be characterized by a pair (c,v) where c is a configuration and v is a
valuation, i.e. a mapping v : X ∪ Ẋ → IR. The initial situation at time t = 0 is a situation
(c,v) where c is the initial configuration and v satisfies the initial condition.

The behavior of a hybrid state machine can now be described by continuous and
discrete state changes. Let (c,v) be the current situation, and S(c) be the set of states
occurring in the configuration tree c. As long as the conjunction of the invariants of all
s ∈ S(c) hold, the multiagent system evolves according to the conjunction of the flow
conditions associated with all states s ∈ S(c); we call this continuous change. Whenever
after some time τ (chosen minimally) the invariants of one or more states do not hold
any longer, then a discrete state change takes place, called micro-step:

Definition 8 (micro-step). A micro-step from one configuration c of a state machine to
a configuration c′ by means of a transition sT s′ with some jump condition in the current
situation (written c → c′) is possible iff:

1. c contains a node labeled with s whose invariant does not hold any longer,
2. the jump condition of the given transition holds in the actual situation (c,v),
3. c′ is identical with c except that s together with its subtree in c is replaced by the

completion of s′, and
4. the variables in X ′ are set according to the jump condition.

We assume, that hybrid state machines are deterministic automata, i.e., for each state s,
the jump conditions of all transitions leaving s cannot hold at the same time. Neverthe-
less it might happen, that after some time τ several invariants become false simultane-
ously, then several micro-steps are performed in parallel for all respective states (called
macro-step then). Conflicts may arise, if invariants of states on one and the same path
in the configuration tree are involved. In this case, outer transitions are preferred over
inner ones. The advantage of this procedure is that the agents are more reactive. In UML
statecharts inner transitions have priority over outer transitions, while this is the other
way round in [5]. State transitions are triggered by the invariants.

The pure state machine for discrete changes can easily be implemented in
the declarative programming language Prolog [3]. Fig. 5 shows a meta-program
realizing the state machine in Prolog. It mimics micro- and macro-steps in the pred-
icate step and completion according to Def. 4 in the predicate complete. Configu-
rations are encoded in Prolog lists, where the head of a list corresponds to the root
of the respective configuration tree. The initial, completed configuration for the exam-
ple in Fig. 1 e.g. can thus be represented as

[firebrigadeagent,[firebrigademain,[idle]],[firebrigaderss,[listen]]].

216 U. Furbach et al.

%%% step(+Config,-Next)
%%% perform transitions to next configuration
step([State|_],Tree) :-

trans(State,Next), !,
complete(Next,Tree).

step([Top|Sub],[Top|Tree]) :-
maplist(step,Sub,Tree).

step([],[]).

%%% complete(+State,-Tree)
%%% build completed Tree below State
complete(State,[State|Complete]) :-

init(State,Init),
maplist(complete,Init,Complete).

Fig. 5. State machine in Prolog for discrete state changes

The Prolog code for the concrete specification (shown in Fig. 6) contains the fact
start denoting the state s0 and facts for the initial states (predicate init). The latter
predicate is also used for simple states (in this case, the list of initial states is empty)
and concurrent states (then this list contains more than one state, one for each region).
The predicate trans realizes the transitions; it contains the jump conditions and ac-
tions of the respective transition in the body. This Prolog implementation technique
has been applied successfully in the RoboCup 2D soccer simulation league (see [17,
Appendix B]).

start(firebrigadeagent).

init(firebrigadeagent,[firebrigademain,firebrigaderss]).
init(firebrigademain,[idle]).
init(idle,[]).
init(move2fire,[]).
init(extinguish,[]).
init(move2supply,[]).
init(refill,[]).
init(firebrigaderss,[listen]).
init(listen,[]).

[...]

trans(move2supply,refill) :-
set(m2stime,0).

[...]

Fig. 6. State hierarchy in Prolog for the example in Fig. 1

Hybrid Multiagent Systems with Timed Synchronization 217

1 automaton Civilian
2 synclabs: help;
3 initially injured & w = -10;
4 loc injured:
5 while w<=0 wait {}
6 when w=0 sync help do {w’ = -10} goto injured;
7 end

8 init_reach := reach forward from init endreach;
9 ext_error := loc[FirebrigadeMain] = extinguish & wLevel < 0;
10 if not empty(init_reach & ext_error)
11 then prints "Error: Tank empty!";
12 endif;

Fig. 7. Excerpt from the HYTECH code formalizing Fig. 2. Lines 1–7 model the civilian
(sub-)automaton. Some analysis commands are shown in ll. 8–12.

4 Model Checking

As we already mentioned, hybrid automata are equipped with a formal semantics, which
makes it possible to apply formal methods in order to prove certain properties of the
specified systems, e.g. by model checking. However, in the context of hybrid automata
the term model checking usually refers to reachability testing, i.e. the question whether
some (unwanted) state is reachable from the initial configuration of the specified sys-
tem. To this end, all states that can be reached by a discrete transition or evolving the
continuous variables according to a flow condition are repeatedly added to the current
configuration until a fixpoint R is reached. Then it can be tested, if unwanted states
are reachable simply by intersecting the sets of reachable and unwanted states. How-
ever, for rectangular hybrid automata, a subclass of linear automata, even LTL model
checking is decidable [8].

4.1 Examples with Standard Model Checkers

For the behavior specification shown in Figs. 1 and 2 we conducted several experiments
with the standard model checkers HYTECH [7] and PHAVer [4]. Both model checkers
are implemented for the analysis of linear hybrid automata. They take textual repre-
sentations of hybrid automata like the one in Fig. 7 as input and perform reachability
tests on the state space of the resulting product automaton. This is usually done by first
computing all states reachable from the initial configuration, and then checking the re-
sulting set for the needed properties. In the remainder of this section, we present some
exemplary model checking tasks for the rescue scenario.

Is it possible to extinguish the fire? When the state of the automaton modeling the fire
changes from no fire to burning, the variable neededw stores the amount of water needed
for putting out the fire (neededw = 120 in the beginning). When the fire is put out, i.e.
neededw = 0, the automaton enters the state put out.Thus the fire can be extinguished,

218 U. Furbach et al.

iff there is a reachable configuration cout where fire is in the state put out. It is easy to see
from the specification, that this is indeed the case, as neededw is only decreased after
the initial setting, and so the transition from burning to put out is eventually forced.

With the help of HYTECH’s trace generation ability it is quite easy to solve the
additional task of comparing different strategies, e.g. for refilling the water tanks. To
this end, traces to cout generated using the different strategies are compared. A shorter
trace (w.r.t. time units, not discrete transitions) corresponds to a faster solving of the
extinguishing task.

Does the agent try to extinguish with an empty water tank? The fact that the fire-
brigade agent tries to put out the fire without water corresponds to the simple state
extinguish being active while wLevel < 0. Note that we must not test for wLevel ≤ 0,
because the state extinguish is only left when the water level is zero, so including a
check for equality leads to false results.

Figure 7 shows how to check this property with HYTECH. The set of reachable states
is collected in the variable init_reach (l. 8), and ext_error is assigned the set of
illegal states (l. 9), i.e. all states where extinguish is active and the water level is below
zero. Lines 10–12 finally show the actual test. If the intersection of reachable and illegal
states in not empty (l. 10), an error message is printed (l. 11).

Does the agent report all discovered civilians? This question contains two properties
to be checked:

(a) all discovered civilians are reported eventually, and
(b) the agent does not report more civilians than he found.

The discovery of a civilian is modeled by increasing the value of the variable civ by one.
For each reported civilian one is subtracted from civ. From this it follows, that (b) holds,
iff no configuration is reachable, where civ < 0. To show (a), one has to ensure that from
all configurations with civ > 0 a configuration with civ = 0 will be reached eventually.
Testing these properties with HYTECH reveals that (b) holds in the specification, i.e. for
all reachable states civ ≥ 0.

However, the analysis also yields that (a) does not hold. As we stated earlier the fire
fighter agent should report civilans when he is in the idle state. But as the invariant
in this state (true) is never violated, the agent is not forced to take the self transition
labeled reported, which corresponds to reporting a civilian. Thus, there is a legal run of
the system, where no civilian is reported at all.

Concerning the robotic soccer example (Fig. 4), there are several questions, which
can be answered with or without model checking. First of all, it is clear that because
of the synchronization variable ball at most one agent will go to the ball. This can be
seen by a careful inspection of the specification. However, the question whether always
at least one agent goes to the ball, cannot be answered that easily. Therefore this is
worthwhile to be model checked.

4.2 Effective Transformation of Multiagent Specifications

The original hybrid automata allow neither hierarchies nor concurrency. Hence, in or-
der to be able to use standard hybrid model checkers, hierarchical hybrid automata

Hybrid Multiagent Systems with Timed Synchronization 219

as stated in this paper have to be flattened. For this, as states of the simple (flat) hy-
brid automaton we take the configurations c with invariants and flow conditions taken
as the conjunction of the respective conditions in the states in S(c). Thus, we define
f low(c) =

∧
s∈S(c) f low(s) and invariant(c) =

∧
s∈S(c) invariant(s), respectively, for

each configuration c. The transitions between configurations of the flat automaton can
be defined as follows: there is a transition between c and c′ iff a micro- or macro-step is
possible. This means, there exist one or more transitions s1Ts′

1, . . . ,smTs′
m for m ≥ 1 in

the original automaton, annotated with the jump conditions jump1, . . . , jumpm, respec-
tively, such that c → c′. Then, we simply annotate the transition from c to c′ in the flat
automaton with the conjunction jump1 ∧·· ·∧ jumpm.

A problem during the transformation process is that some of the constraints, e.g. in-
variants, lead to heavily non-linear (in)equations, e.g. ‖p− b‖ ≥ DHB. This cannot be
dealt with standard model checkers for at least two reasons: they can neither deal practi-
cally nor even theoretically with them because of the appalling computational complex-
ity. Therefore, the above-stated condition has to be reformulated. The Euclidean distance
can be approximated by the Manhattan distance: |p.x − b.x|+ |p.y − b.y|≥ DHB.

It should be remarked that synchronization points help us to reduce complexity. In
order to see this, let us consider a multiple composite state with cardinality m containing
k (simple) states. One of them, say s, is connected to a synchronization point with
capacity C. Then there are in principle km different configurations, i.e. exponentially
many. Since at most C agents can be in s, only ∑C

l=0

(m
l

)
(k − 1)m−l configurations have

to be considered. This is polynomial for k = 2. A naı̈ve flattening of the example in
Fig. 4 e.g. leads to 8 · 8 + 1 = 65 configurations, whereas taking synchronization into
account leads to only 2 ·2 + 2 ·2 ·6+1 = 29 configuration states.

A translator that automatically converts hybrid hierarchical statecharts into simple
flat hybrid automata has been implemented [2,16] (see fstolzenburg.hs-harz.de/
robocup/publications/). This tool allows the text-based input of hybrid hierarchi-
cal automata specifications of multi-agent systems with synchronization, based on the
procedure proposed in this paper. By means of different plug-ins, the translation into
flat automata is performed, leading to executable code for Sony Aibo robot dogs on the
one hand and code in PHAVer syntax for model checking tasks on the other hand. The
former plug-in has been successfully applied in the RoboCup four-legged league within
the team Harzer Rollers (see [16] and robocup.hs-harz.de for details).

5 Conclusions

In this paper, we demonstrated the use of hybrid hierarchical state machines for the
specification of multiagent systems. We presented two application scenarios from the
RoboCup, one from the rescue simulation and one from robotic soccer, and we demon-
strated that state-of-the-art model checkers for hybrid automata can be used for proving
properties of the specified systems. We exemplified this especially with an example
from the RoboCup rescue scenario. The proposed method of treating synchronization
avoids the state explosion problem to a certain extent, however, the growth of the

220 U. Furbach et al.

number is still exponential. Model checking, i.e. reachability analysis helps us find-
ing out possible paths, which could help in the pre-computation of multiagent system
implementations. This point will be subject of future work.

References

1. Arai, T., Stolzenburg, F.: Multiagent systems specification by UML statecharts aiming at
intelligent manufacturing. In: Proceedings of 1st International Joint Conference on Au-
tonomous Agents & Multi-Agent Systems, pp. 11–18. ACM Press, New York (2002)

2. Bernstein, T., et al.: HAL – hybrid automaton language. Team project description (in Ger-
man), Department of Automation and Computer Sciences, Hochschule Harz (2006)

3. Clocksin, W.F., Mellish, C.S.: Programming in Prolog, 4th edn. Springer, Berlin (1994)
4. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M.,

Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)
5. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Transactions on

Software Engineering and Methodology 5(4), 293–333 (1996)
6. Henzinger, T.: The theory of hybrid automata. In: Proceedings of the 11th Annual Sym-

posium on Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los
Alamitos (1996)

7. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: The Next Generation. In: IEEE Real-
Time Systems Symposium, pp. 56–65 (1995)

8. Henzinger, T.A., Majumdar, R.: Symbolic model checking for rectangular hybrid systems.
In: Tools and Algorithms for Construction and Analysis of Systems, pp. 142–156 (2000)

9. Murray, J.: Specifying agent behaviors with UML statecharts and StatEdit. In: Polani, D.,
Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020,
Springer, Heidelberg (2004)

10. Murray, J., Stolzenburg, F.: Hybrid state machines with timed synchronization for multi-
robot system specification. In: Bento, C., et al. (eds.) Proceedings of 12th Portuguese Con-
ference on Artificial Intelligence, pp. 236–241. IEEE Inc, Los Alamitos (2005)

11. Murray, J., Stolzenburg, F., Arai, T.: Hybrid state machines with timed synchronization for
multi-robot system specification. KI 3/06, 45–50 (2006)

12. Object Management Group, Inc. UML Specification, Version 1.5 (March 2003)
13. Object Management Group, Inc. UML 2.0 Superstructure Specification (October 2004)
14. Pnueli, A., Shalev, M.: What is in a step: On the semantics of statecharts. In: Ito, T., Meyer,

A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 244–264. Springer, Heidelberg (1991)
15. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First

Intl. Conference on Multiagent Systems, San Francisco (1995)
16. Ruh, F.: A translator for cooperative strategies of mobile agents for four-legged robots. Mas-

ter thesis, Dept. of Automation and Computer Sciences, Hochschule Harz (2007)
17. Stolzenburg, F.: Multiagent systems and RoboCup: Specification, analysis, and theoretical

results. Habilitation, Universität Koblenz-Landau, Koblenz, Reviewers: Armin Cremers, Ul-
rich Furbach, and Klaus Troitzsch (2005)

18. Stolzenburg, F., Arai, T.: From the specification of multiagent systems by statecharts to their
formal analysis by model checking: Towards safety-critical applications. In: Schillo, M.,
Klusch, M., Müller, J., Tianfield, H. (eds.) MATES 2003. LNCS (LNAI), vol. 2831, pp. 131–
143. Springer, Heidelberg (2003)

19. Tadokoro, S., et al.: The RoboCup-Rescue project: A robotic approach to the disaster mitiga-
tion problem. In: Proceedings of IEEE International Conference on Robotics and Automation
(ICRA 2000), pp. 4089–4104 (2000)

Agent Contest Competition:

3rd Edition

Mehdi Dastani1, Jürgen Dix2, and Peter Novák2

1Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

mehdi@cs.uu.nl
2Clausthal University of Technology

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
{dix,peter.novak}@tu-clausthal.de

Abstract. This paper summarises the Agent Contest 2007 which was
organized in association with ProMAS’07. The aim of this contest is to
stimulate research in the area of multi-agent systems by identifying key
problems and collecting suitable benchmarks that can serve as milestones
for evaluating new tools, models, and techniques to develop multi-agent
systems. The first two editions of this contest were organized in associ-
ation with CLIMA conference series. Based on the experiences from the
previous two editions ([8,9]), the contest scenario has been slightly ex-
tended to test the participating multi-agent systems on their abilities to
coordinate, cooperate, and their team work and team strategy issues in a
dynamic environment where teams compete for the same resources. Six
groups from Germany, Brazil, England, Australia and The Netherlands
did participate in this contest. The actual contest took place prior to
the ProMAS’07 workshop and the winner, a group from the technical
university of Berlin, was announced during ProMAS’07.

1 Introduction

Multi-agent systems are beginning to play an important role in today’s software
development. In the field of agent-oriented software engineering, various multi-
agent system development methodologies have been proposed. Each method-
ology focuses on specific stages of the multi-agent system development. For
example, Gaia [12] and Prometheus [10] focus on the specification and design
stages assuming that other stages such as requirement and implementation are
similar to corresponding stages of other software development paradigms. There-
fore, software developers using Gaia and Prometheus propose models to specify
and design multi-agent systems, while ignoring the implementation models.

Moreover, there is a growing number of agent-oriented programming languages
and development platforms that are proposed to facilitate the implementation
of multi-agent systems. These programming languages and platforms introduce
programming constructs that can facilitate efficient and effective implementation
and execution of multi-agent systems. The development of multi-agent systems

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 221–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 M. Dastani, J. Dix, and P. Novák

requires efficient and effective solutions for different problems which can be di-
vided into three classes: 1) the problems related to the development of individual
agents, 2) the problems related to the development of coordination and coop-
eration mechanisms to manage the interactions between individual agents, and
3) the problems related to the development of the shared environment in which
agents perform their actions.

Typical problems related to individual agents are how to specify, design and
implement issues such as autonomy, pro-active/reactive behaviour, perception
and update of information, reasoning and deliberation, and planning. Typical
problems related to the interaction of individual agents are how to specify, de-
sign and implement issues such as communication, coordination, cooperation and
negotiation. Finally, typical problems related to the development of their envi-
ronment are how to specify, design and implement issues such as resources and
services, agents’ access to resources, active and passive sensing of the environ-
ment, and realizing the effects of actions.

This competition is an attempt to stimulate research in the area of multi-agent
systems by

1. identifying key problems in developing multi-agent systems, and
2. evaluating state-of-the-art tools, models, and techniques in the field of multi-

agent systems.

While there already exist several competitions in various areas of artificial
intelligence (theorem proving, planning, Robo-Cup, etc.) and, lately, also in
specialized areas in agent systems (Trading Agent Competition (TAC) [1] and
AgentCities competitions [2]), the emphasis of this contest is on the use of ex-
isting tools, models, and techniques that are proposed to develop multi-agent
systems ([3,7,4]. In particular, we aim at evaluating existing approaches for the
development of multi-agent systems where individual agents has to cooperate
with each other to solve a task. In this respect, issues such as team working,
team strategy, interaction with dynamic environment, modeling the environ-
ment, limited perception, uncertain action effects, reasoning and planning, and
learning are essential.

The previous editions of this contestwere organized in cooperationwith CLIMA
workshop series. The scenario from this year can be seen as an extension of the
scenario from the CLIMA VII Contest 2006. The main differences include:

– perception now includes also the information about the number of gold items
an agent carries,

– number of agents per team is 6, instead of 4 last year,
– agents can push each other,
– agents can collect and carry more gold items,
– each agent has to connect to the server from a separate IP address (this

requirement might be a subject of change).

We believe that these extensions lead to a greater competitiveness of the sce-
nario (the fun factor should not be underestimated) and put the participating

Agent Contest Competition 223

multi-agent systems under a test w.r.t. coordination and cooperation issues in
an environment where teams compete for the same resources.

2 Scenario Description

The competition task consisted of developing a multi-agent system to solve a
cooperative task in a dynamically changing environment. The environment of
the multi-agent system was a grid-like world where agents could move from
one cell to a neighbouring cell. In this environment, gold could appear in the
cells. Participating agent teams were expected to explore the environment, avoid
obstacles and compete with another agent team for the gold. The agents of each
team could coordinate their actions in order to collect as much gold as they could
and to deliver it to the depot where the gold can be safely stored. Agents had
only a local view on their environment, their perceptions could be incomplete,
and their actions could fail. The agents were able to play different roles (such as
explorer or collector), communicate and cooperate in order to find and collect
gold in an efficient and effective way.

The idea was to divide participating agent teams randomly into groups be-
fore the tournament started. Each team from one group should then compete
against all other teams in the same group in a series of matches. The winners
from these groups should form a new group and each team in a new group should
play against each other again. In the case of few participating teams, we had
planned to form only one single group consisting of all teams. Because of the
number of participants, we decided to form only one group for this edition of
the agent contest. Each team competed against all other teams in a series of
matches. Each match between two competing teams consisted of five simula-
tions. A simulation between two teams was a competition between them with
respect to a certain starting configuration of the environment. Winning a sim-
ulation yielded three points for the team, a draw was worth one point and a
loss resulted in zero points. The winner of the whole tournament was evaluated
on the basis of the overall number of collected points in the matches during
the tournament. In the case of equal number of points, the winner should be
decided on the basis of the absolute number of collected gold items. Details on
the number of simulations per match and the exact structure of the competition
was published prior to the Contest on the official Agent Contest 2007 website at
http://cig.in.tu-clausthal.de/AgentContest2007/.

2.1 Technical Description of the Scenario

In the contest, the agents from each participating team were executed locally
(on the participant’s hardware) while the simulated environment, in which all
agents from competing teams performed actions, was run on the remote contest
simulation server run by the contest organizers. The interaction/communication
between agents from one team were managed locally, but the interaction between
individual agents and their environment (run on the simulation server) took place

http://cig.in.tu-clausthal.de/AgentContest2007/

224 M. Dastani, J. Dix, and P. Novák

via Internet. Participating agents were connected to the simulation server that
did provide the information about the environment. Each agent from each team
connected to and communicated with the simulation server using TCP protocol
and messages in XML format.

During the initial phase1 agents from all competing teams connected to the
simulation server, identified and authenticated themselves and got general match
information. Each agent had to connect to the simulation server from a separate
IP address. Teams not obeying this rule would have been disqualified and dis-
connected from the simulation server during the tournament. At the announced
start time of the tournament, the simulation server was on-line and the agents
from participating teams were able to connect to it. After a successful initial
handshake during which agents identified themselves by their IDs and received
acknowledgment from the server, they waited for the simulation start. The initial
connecting phase took a reasonable amount of time in order to allow agents to
be initialised and connected (15 minutes).

The simulation server controlled the competition by selecting the compet-
ing teams and managing the matches and simulations. In each simulation, the
simulation server, in a cyclic fashion, provided sensory information about the
environment to the participating agents and expected their reactions within a
given time limit. Each agent reacted to the received sensory information by in-
dicating which action (including the skip action) it wants to perform in the
environment. If no reaction was received from the agent within the given time
limit, the simulation server assumed that the agent performed the skip action.
Agents had only a local view on their environment, their perceptions could be
incomplete, and their actions could fail. After a finite number of steps the sim-
ulation server stopped the cycle and participating agents received a notification
about the end of a simulation. Then the server started a new simulation possibly
involving the same teams.

2.2 Team, Match, and Simulation

An agent team consisted of six software agents with distinct IDs. There were no
restrictions on the implementation of agents, although we encouraged the use of
approaches based on the state-of-the-art tools, methodologies and languages for
programming agents and multi-agent systems, as well as the use of computational
logic based approaches. The tournament consisted of a number of matches. A
match was a sequence of simulations during which two teams of agents competed
in several different settings of the environment. For each match, the server 1)
picked two teams to play it and, subsequently, 2) started the first simulation
of the match. Each simulation in a match started by notifying the agents from
the participating teams and sending them the details of the simulation. These
included for example the size of the grid, the depot position, the number of steps
the simulation will perform, etc. A simulation consisted of a number of simulation

1 The contest organizers contacted participants before the actual tournament and
provided them the IDs necessary for identification of their agents for the tournament.

Agent Contest Competition 225

steps. Each step consisted of 1) sending a sensory information to agents (one or
more) and 2) waiting for their actions. In the case that an agent did not respond
within a timeout (specified at the beginning of the simulation) by a valid action,
it was considered to perform the skip action in the given simulation step.

2.3 Environment Objects

The (simulated) environment was a rectangular grid consisting of cells. The
size of the grid was specified at the start of each simulation and was variable.
However, it was always at most 100x100 cells. The [0,0] coordinate of the grid
was in the top-left corner (north-west). The simulated environment contained
one depot, which served for both teams as a location of delivery of gold items.
The environment did contain the following objects in its cells:

– an obstacle (a cell with an obstacle cannot be visited by an agent),
– gold (an item which can be picked from a cell) agent,
– an agent,
– the depot (a cell to which gold items are to be delivered in order to earn a

point in a simulation),
– a marker (a string data with a maximum of 5 characters which can be

read/written/rewritten/removed by an agent).

There could be only one object in a cell, except that an agent could enter cells
containing gold, depot or mark. A gold item could be in a marked cell visited
by an agent. At the beginning of a simulation the grid contained obstacles,
gold items and agents of both teams. Distribution of obstacles, gold items and
initial positions of agents was either hand crafted for the particular scenario, or
completely random. During the simulation, gold items were appearing randomly
in empty cells of the grid. The frequency and probability of gold generation
was simulation specific, however not known to neither agents, nor participants.
At the start of each simulation agents got the details of the environment (grid
size, depot position, etc.). Agents also received information about their initial
position in the perception information of the first simulation step.

Perception. Agents were located in the grid and the simulation server provided
each agent with the following information:

– the absolute position of the agent in the grid,
– the content of the cells surrounding the agent and the content of the cell in

which the agent currently stands in (9 cells in total),
– the number of gold items the agent currently holds.

If two agents were standing in each other’s field of view, they were able to
recognize whether they are enemies, or whether they belong to the same team.
However an agent was not able to recognise whether the other agent carries a
gold item or not. If there was a mark in a cell, within the agent’s field of view,
the agent also received the information about its content.

226 M. Dastani, J. Dix, and P. Novák

Actions. Agents were allowed to perform one action in a simulation step. The
following actions were allowed:

– skip: The execution of the skip action had no influence on the local state of
the environment around the agent (under the assumption that other agents
did not change it). When an agent did not respond to a perception informa-
tion provided by the simulation server within the given time limit, the agent
was considered as performing the skip action.

– movements (right, up, left, down): An agent could move in four di-
rections in the grid. These movement actions were specified as follows. The
execution of move actions up, down, left and right changes the position of
the agent one cell to the up, down, left, and right, respectively. A movement
action succeeds only when the cell to which an agent is about to move does
not contain an obstacle. In the case two agents stand in adjacent cells and
one of them tries to step into the cell the second agent stands in while the
second agent performs e.g. skip action, the second agent can be pushed away.
The resulting local change of the environment amounts to the same situation
as if the pushed agent performed a move action in the same direction as the
pushing agent. The same constraints as for regular move actions apply, i.e.
there cannot be another obstacle, or an agent standing in the way of the
pushed agent. Only one agent can be pushed in one move. In the case both
agents standing in the adjacent cells try to push each other, one of them
will be randomly determined (with probability of 50%) as the pushing and
the other as the pushed agent. A detailed specification of the action exe-
cution algorithm later in this paper describes further details of push action
and its consequences. Moving to and from the depot cell were regulated by
additional rules described later in this description.

– pick, drop: An agent could carry up to maximum of three gold items which
it successfully picked up before. An agent could pick up a gold item if 1) the
cell in which the agent stands in contains gold, and 2) the agent carries less
than 3 gold items. An agent could drop gold item it carried only into the
empty cell it stood in. The result of a successful pick action is that in the
next simulation step the acting agent will be considered to carry one more
gold item than before performing the pick action and the cell, it stands in,
will not contain the gold item any more. The result of a drop action is that
the acting agent is carrying one gold item less than before performing the
drop action (given that the agent was carrying at least one gold item in that
simulation step) and that the cell it stands in will contain the gold item in
the next simulation step. Drop action performed in the depot cell results in
dropping all the gold items the agent carries at once and increases the score
of the agent’s team by a number of points equal to the number of gold items
the agent dropped in the depot cell. The depot cell never contains a gold
item that can be picked by an agent.

– mark, unmark: An agent was allowed to mark a cell it stood in by a string
data with a maximum of 5 characters. The result of a mark action is that the
cell in which an agent is located, will contain a string in the next simulation

Agent Contest Competition 227

step. The depot cell, and cells containing an obstacle cannot be marked. By
marking a previously marked cell, the old mark is removed and replaced
by the new one. If the cell in which an agent is located, contains a mark,
then the agent receives the string in the perception information from the
simulation server. An agent was allowed to unmark the marked cell it stood
in. The result of an unmark action is that the cell will not contain a mark
in the next simulation step. Agents do not get immediate feedback on their
actions, but can learn about the effects of their actions (and the actions of
other agents) from the perception information that will be sent to them in
the next simulation step.

Action Execution Algorithm. After the simulation engine collected the ac-
tions that the agents chose to execute in the next simulation step (or the simula-
tion step timeout for agent’s reaction elapsed), the next state of the environment
was determined as follows:

1. all the agents’ impossible actions were replaced by skip actions. An impos-
sible action is:
– the move action when the agent tries to step into an obstacle, or out of

the grid boundary, or
– the drop action when the cell already contains gold, or
– the pick action when there’s no gold contained in the cell, or
– the unmark action when the cell does not contain a mark;

2. the simulation engine determined actions which will fail because of Fatigue
(see description below) and replaces them with a skip action;

3. for each cell not containing an agent, or an obstacle, such that there’s at least
one agent indicating an intention to move into it, one of these agents was
selected and moved to this cell. Actions of all the other considered agents
were replaced with a skip action;

4. for each agent which can be pushed by more than one pushing agent (an
agent can be pushed iff it is about to perform a skip action [after applying
steps 1-3], the cell it is going to be pushed into is within the grid boundary
and does not contain an agent, or an obstacle), one such pushing agent was
selected, and both pushed and pushing agents were moved in the direction
of the move of the pushing agent;

5. all other move actions which were not executed in steps 3 and 4 were replaced
by skip action;

6. all the non-move actions were executed;
7. further internal changes and calculations of the environment, like e.g. gold

generation, took place.

Depot cell. Strong conditions were imposed on the depot cell:

1. an agent not carrying a gold item was unable to enter the depot cell (the
result of such an action is the same as if the depot was an obstacle);

2. agent which entered the depot cell should drop the gold item as the very
next action it executed;

228 M. Dastani, J. Dix, and P. Novák

3. after dropping the gold item in a cell, an agent had to leave the cell in the
first subsequent simulation step when it was able to move (i.e. when there
was an empty cell at the time of agent’s move action).

If an agent did not leave the depot in the first possible opportunity, or did not
drop the gold item as the very next action after entering the depot, the simulation
server punished it by “teleporting” it away (it was moved to a random cell not
containing another agent, or obstacle in the grid by the environment simulator).

Timeout. The agents had to inform the simulation server which action they
wanted to perform within a timeout specified at the beginning of the simulation.
Timeouts were set reasonably high, so that even participants with a slow network
connection and complex deliberation algorithms were able to communicate with
the server in an efficient way. Simulation timeouts were not lower than two
seconds and higher than 10 seconds per one simulation step.

A ping interface was provided by the server in order to allow participating
agents to test the speed of their connection during the initial phase of the tour-
nament. Note, that only a limited number of ping requests were processed from
one agent in a certain time interval.

Fatigue (Information Distortion/Action Failure). Agents received incom-
plete information about the environment from the simulation server. The simula-
tion server could omit information about particular environment cells, however,
the server never provided incorrect information. Also, agent’s action could fail. In
such a case the simulation server evaluated the agent’s action in the simulation
step as a skip action.

Both the probability of sending an agent incomplete information (Pinf) and
the probability of agent’s action failure (Pfail) were constant and specific for each
simulation, however not higher than 20%. Moreover, both probabilities increase
in a linear fashion with respect to the number of gold items currently carried
by the agent up to at most 50%. The equation regulating this relation was as
follows:

p = Psim +
Pmax − Psim

NitMax
× Nit

Here, P stands for the actual probability of action failure, or information dis-
tortion w.r.t. number of items the agent currently carries, Psim is the probability
of action failure/information distortion set as default for the current simulation
(it is equal to the corresponding probability when agent does not carry a gold
item). Pmax and NitMax are the maximal value of failure/information distor-
tion probability (at most 50%) and maximal number of gold items the agent
is allowed to carry (3 as specified above) respectively. These values, together
with Psim (at most 20%) are parameters of each current simulation. Finally Nit

stands for the number of gold items the agent currently carries.
Below we list examples of two simulation settings together with tables of re-

sulting probabilities for agent carrying 0, 1, 2 and 3 gold items:

Agent Contest Competition 229

Psim = 10% Psim = 5%
Pmax = 50% Pmax = 40%
NitMax = 3 NitMax = 3

Nit - P Nit - P
0 - 10.0% 0 - 5.0%
1 - 23.3% 1 - 16.6%
2 - 36.6% 2 - 28.3%
3 - 50.0% 3 - 40.0%
Simulation parameters Psim, Pmax are not known neither to agent team de-

signers, nor to the agents during the simulation. As already mentioned above,
NitMax is a constant set to 3 for all simulations in the tournament.

Final Phase. In the final phase, the simulation server sent a message to each
agent allowing them to disconnect from the server. By this, the tournament was
over.

2.4 General Agent-2-Server Communication Principles

In this contest, the agents from each participating team were executed locally
(on the participant’s hardware) while the simulated environment, in which all
agents from competing teams performed actions, was run on the remote contest
simulation server. Agents communicated with the contest server using standard
TCP/IP stack with socket session interface. The Internet coordinates (IP address
and port) of the contest server (and a dedicated test server) were announced later
via the official Contest mailing list. Agents communicated with the server by ex-
changing XML messages. Messages were well-formed XML documents, described
later in this document. We recommended using standard XML parsers available
for many programming languages for generation and processing of these XML
messages.

Communication Protocol. The tournament consisted of a number of matches.
A match is a sequence of simulations during which two teams of agents com-
pete in several different settings of the environment. However, from the agent’s
point of view, the tournament consisted of a number of simulations in different
environment settings and against different opponents.

The tournament was divided into three phases. During the initial phase,
agents connected to the simulation server and identified themselves by user-
name and password (AUTH-REQUEST message). Credentials for each agent
were distributed in advance via e-mail. As a response, agents received the result
of their authentication request (AUTH-RESPONSE message) which either suc-
ceeded, or failed. After successful authentication, agents waited until the first
simulation of the tournament started.

At the beginning of each simulation, agents of the two participating teams
were notified (SIM-START message) and received simulation specific informa-
tion: simulation ID, opponent’s ID, grid size, number of steps the simulation will
last and the depot position.

230 M. Dastani, J. Dix, and P. Novák

In each simulation step an agent received a perception about its environment
(REQUEST-ACTION message) and it responded by performing an action (AC-
TION message). Each request-action message contained information about nine
neighboring cells around the agent (including the one agent stands on), its ab-
solute position in the grid, simulation step number, number of gold items the
agent carries and deadline for its response. The agent had to answer within the
given deadline. The action message contained the identifier of the action, agent
wants to perform, and action parameters, if required.

When the simulation was finished, participating agents received the notifi-
cation about it (SIM-END message) which included the information about the
number of gold items collected by the team agent belongs to and the information
about the result of the simulation (whether the team won, or lost the simulation).

All agents which currently did not participate in a simulation had to wait until
the simulation server notified them about either 1) the start of a simulation they
are going to participate in, or 2) the end of the tournament.

At the end of the tournament, all agents received the notification (BYE
message). Subsequently the simulation server terminated the connection to the
agent.

Reconnection. When an agent lost connection to the simulation server, the
tournament proceeded without disruption, only all the actions of the discon-
nected agent were considered to be empty (skip). Agents were responsible for
maintaining the connection to the simulation server and in a case of connection
disruption, they were allowed to reconnect.

An agent reconnected by performing the same sequence of steps as at the be-
ginning of the tournament. After establishing the connection to the simulation
server, it sent AUTH-REQUEST message and received AUTH-RESPONSE. Af-
ter successful authentication, the server sent SIM-START message to an agent.
If an agent participated in a currently running simulation, the SIM-START mes-
sage was delivered immediately after AUTH-RESPONSE. Otherwise an agent
had to wait until the next simulation in which it participates. In the next
step when the agent was picked to perform an action, it received the stan-
dard REQUEST-ACTION message containing the perception of the agent at
the current simulation step and simulation proceeded in a normal mode.

Ping Interface. The simulation server provided a ping interface in order to
allow agents to test their connection to the simulation server. An agent can send
a PING message containing a payload data (ASCII string up to 100 characters)
and it received a PONG message with the same payload. As all messages con-
tained a timestamp (see description of the message envelope below), an agent
could also use the ping interface to synchronize its local time with the server.

XML Messages Description. XML messages exchanged between server and
agents were zero terminated UTF-8 strings. Each XML message exchanged be-
tween the simulation server and agent consisted of three parts:

Agent Contest Competition 231

– Standard XML header: Contains the standard XML document header
<?xml version="1.0" encoding="UTF-8"?>

– Message envelope: The root element of all XML messages was <message>.
It has attributes: the timestamp and a message type identifier.

– Message separator: Each message is a UTF-8 zero terminated string. Mes-
sages are separated by null byte.

Timestamp is a numeric string containing the status of the simulation server’s
global timer at the time of message creation. The unit of the global timer is
milliseconds and it is the result of standard system call ”time” on the simulation
server (measuring number of milliseconds from January 1, 1970 UTC). Message
type identifier was one of the following values: auth-request, auth-response, sim-
start, sim-end, bye, request-action, action, ping, pong.

Messages sent from the server to an agent contained all attributes of the root
element. However, the timestamp attribute could be omitted in messages sent
from an agent to the server. In the case it was included, server silently ignored
it.

Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

According to the message type, the root element <message> can contain
simulation specific data. These simulation data are described and explained in
the official contest webpage2

3 Submission

The participation in this contest consisted of two parts. Participants first sub-
mitted the description of analysis, design and implementation of a multi-agent
system for the above application. Existing multi-agent system methodologies
such as Gaia, Prometheus or Tropos can be used to describe the system. For
the description of the implementation, it should be explained how the design is
implemented. This can be done by explaining, for example, which programming
language, platform, tools, and techniques are used to implement the multi-agent
system. These submissions are included in this volume.

2 http://cig.in.tu-clausthal.de/fileadmin/user upload/ temp /
ac07-protocol.txt

http://cig.in.tu-clausthal.de/fileadmin/user_upload_temp_/ac07-protocol.txt
http://cig.in.tu-clausthal.de/fileadmin/user_upload/_temp_/ac07-protocol.txt

232 M. Dastani, J. Dix, and P. Novák

The second part of the contest is the actual participation in the tournament by
means of an (executable) implementation of a multi-agent system. The agents
from each participating systems (agent teams) were executed locally (on the
participant’s hardware) while the simulated environment, in which all agents
from competing teams perform actions, was run on the remote contest simula-
tion server. Interaction/communication between agents from one team has been
managed locally, but the interaction between individual agents and their envi-
ronment (run on the simulation server) was via Internet. Participating agents
connected to the simulation server that provided the information about the en-
vironment. Each agent from each team connected and communicated to the
simulation server using a TCP connection.

3.1 Received Submissions

We have received seven submissions for this edition of the contest from which
one withdrew just before the start of the actual contest tournament. From the re-
ceived submissions, which are included in this volume, three submissions used ex-
isting multi-agent development methodologies to specify and design their multi-
agent systems. Other submissions used their own developed agent platforms and
corresponding customised development methodologies. The withdrawn submis-
sion intended to use GoLog, a knowledge representation language based on logic.
Unfortunately, one competitor in the contest could not provide a description of
their team in this volume.

The submission by J.F. Hübner and R.H. Bordini was a collaboration between
Durham University, UK, and Universidade Regional de Blumenau, Brazil. Like
their submission to the previous edition of this contest, they use Prometheus
[10] as the multi-agent system development methodology to specify and design
their multi-agent system. Using this methodology, the multi-agent system is
designed by means of a system overview Diagram that describes the interaction
between miner and leader agents. Miners are the agents that interact with the
contest simulator and the leader helps the coordination of some activities. These
agents are subsequently specified and designed in terms agent overview diagrams
describing their specific knowledge, goals and plans. Their designed system is
then implemented in Jason [5], which is an interpreter of an extension of the
agent programming language AgentSpeak [11]. As it was required by the contest,
their multi-agent system consisted of six miner agents operating in the simulated
environment. These agents follow a general strategy according to which each
agent is responsible for one quadrant of the grid environment. The leader helps
the miners to coordinate themselves in two ways. First, it allocates miners to
quadrants, and second it coordinate the negotiation process that is started when
a miner sees a piece of gold and is not able to collect it (because its container is
full).

The second submission that uses existing multi-agent system development
methodologies to specify and design their system is by L. Astefanoaei, C.P. Mol,
M.P. Sindlar, and N.A.M. Tinnemeier from Utrecht University, Netherlands.
They use a combination of Tropos and Moise+ methodologies. They use Tropos

Agent Contest Competition 233

to specify the multi-agent system in terms of system goal and subgoals and
Moise+ to specify the roles the agent cap play and the interaction between roles.
In their system specification, an agent can play three different roles: leader,
scout, and miner. Moreover, their system can have at most one leader, and zero
to six players that can play the scout or miner role. The leader communicates
with the scouts and the miners. The leader coordinate the behavior of scouts
and miners by means of task ordering: first the scouts explore the wilderness,
then the miners can gold-enrich the team. They use the 2APL programming
language and its corresponding multi-agent platform to implement and execute
their multi-agent system.

The third submission is by E. Tuguldur and M. Patzlaff from the DAI-Labor,
Technische Universität Berlin, Germany. They develop a multi-agent system
based on microJIAC agent definition and its corresponding Maven plug-in that
supports the compilation and packaging process of agents. According to this defi-
nition, an agent consists of three components: connector, perceptor, and monitor.
The connector maintains the connection to the contest server, the perceptor up-
dates the agent’s world model, and the monitor which provides a graphical user
interface to display the world model of the agent (mainly for debug purposes).
The microJIAC is a lightweight agent architecture targeted at devices with dif-
ferent capabilities. Each agent can be in either explorer or transporter mode.
An agent in the explorer mode aims at collecting gold items up to the maxi-
mum amount of gold items that it can carry. When an agent changes its role
to transporter mode, it aims at reaching the depot to drop all gold items. After
dropping its gold items the transporter agent becomes an explorer again.

The fourth submission was by A. Hessler, B. Hirsch, and J. Keiser, also from
the DAI-Labor, Technische Universität Berlin, Germany. They used the JIAC
IV (Java Intelligent Agent Componentware) methodology and its correspond-
ing framework to develop their multi-agent system participating in the agent
contest. The JIAC methodology is based on the JIAC meta-model that has ex-
plicit notions of goal, rule, plan, service and protocol. The JIAC development
process starts with collecting, structuring and prioritising domain vocabulary
and requirements. Based on the requirements with the highest priority a multi-
agent system architecture is designed by listing the agents. Plans, services and
protocols are then implemented and plugged into agents. The application is
then evaluated and, if necessary, the cycle is started until the desired quality of
the multi-agent system is achieved. In their multi-agent system implementation
agents cooperate by sharing their perceptions, states, and intentions as they may
go for the same unknown field or to pick the same gold items. In their approach
agent communication and cooperation is fully decentralised. There is neither a
message broker nor a central instance which coordinates agents. Every agent
builds its own world model from what it is told by the server and the other
agents. Every agent also plans for itself, taking the states and intentions of other
agents into account.

The fifth system, by Sebastian Sardina and Dave Scerri, from RMIT Uni-
versity, Australia, was mostly designed using the Prometheus [10] multi-agent

234 M. Dastani, J. Dix, and P. Novák

system development methodology and implemented in the JACK BDI agent-
oriented programming language [6] using its JDE development environment. In
this system, there are two type of agents: player agents and one coordinator
agent. The player agents are the ones that are able to interact with the game
simulator; whereas the coordinator agent acts as an (information) proxy among
the player agents, and instructs the players on some activities. At any point
in time, a player agent can play either a “collector” role or an “explorer” role.
These roles are assigned by the coordinator agent. As a collector, a player agent’s
main objective is to collect gold pieces and bring them to the depot location.
In contrast, as an explorer, the objective of a player is to gather information
about unknown areas of the world, and communicate such information to the
coordinator. Collector players also have a set of quantitative parameters that
influence the way it would behave. For example, an “exploration attitude” pa-
rameter determines how bias a collector agent is towards exploration. In that
way, a collector can be bias to explore (or to avoid exploring) unknown areas of
the grid while traveling to the depot location for gold deposition. Unfortunately,
the JACK system was not able to sustain its participation throughout the whole
contest, as the system communication infrastructure was not sufficiently robust
and, as a result, the agents would very often lose communication with the contest
simulator.

The final submission is by S. Schiffel, M. Thielscher, and D. Thu Trang from
Dresden University of Technology, Germany. Like their submission in the pre-
vious edition of this contest, they do not use any specific multi-agent system
development methodology. Instead, they use FLUX agents to design and imple-
ment their multi-agent system. Each FLUX agent is a logic program consisting of
three modules: the fundamental reasoning facilities based on the fluent calculus,
the specification of the effects of actions, and the strategy. Their implemented
multi-agent system consists of six agents and a leader. The leader coordinates
the behaviors of other agents by helping them to share their information about
the environment. The action of an agent depends on the current intentions of
that agent and the current state of the world. After an agent decides on its next
action it sends its new information and its current intention to the leader. The
leader sends information gathered by the other agents to the agent and might re-
quest the agent to change its intentions for coordinating the agents of the team.
Conflicts between agents are resolved in two ways. First, the leader assigns areas
to the agents for exploration. Second, small conflicts such as when several agents
try to get into the same cell, are resolved using fixed priorities of the agents.

4 Technical Infrastructure

In the third edition of this Agent Contest, we re-used the technical infrastructure
we developed for the second edition. Briefly, the server’s architecture consists of

1. simulation plug-in: A replaceable module providing the logics of the envi-
ronment simulation,

Agent Contest Competition 235

2. agent session manager : Responsible for holding the sessions between the
server and individual agents and en/de-coding of XML messages of the pro-
tocol,

3. visualization library: It produced the SVG records from each time frame of
the simulation environment state,

4. contest webinterface: Providing a public view and interface to the MASSim
server, and

5. MASSim core module: Managing the tournament scheme and providing the
connection between the simulation plug-in, agent session manager and web-
interface.

A more detailed description of the system can be found in the report on the
second edition of the Agent Contest [9]. The system is published on the official
Contest website: http://cig.in.tu-clausthal.de/AgentContest/.

4.1 Contest Preparation

As in previous editions, before the tournament itself, the Contest organization
went through several preparatory stages. We released the communication proto-
col for the 2007 Contest simulation scenario in February 2nd 2007 together with a
template for system description submissions. The first protocol release contained
a requirement that each agent has to run from a distinct IP address, however
after a discussion with potential participants, we dropped this requirement later
(February 23rd). The main reason was the variety of network infrastructures on
the participants’ side like e.g. NAT and various other IP masquerading technolo-
gies which render this requirement not enforceable.

Shortly before the system description submission deadline on March 10th
2007, we published the first release of the testing suite on March 6th, which
was later followed by a precise description of the algorithm for calculating agent
movements regarding various configurations of situations when agents push each
other. The testing suite contained a testing version of the MASSim server con-
figured to run the 2007 Contest simulation, together with a simple debugging
tool (MASSim Debug Monitor) and vanilla agents compatible with the Contest
scenario.

The Agent Contest 2007 testing phase was launched on March 27th 2007 and
ran until the very Contest tournament launch on May 2nd 2007. During this
period, which lasted more than one month, the participants could freely connect
to the testing server and test their agents in a simulated match against our
dummy Bot agent team. We did not allow different teams to compete against
each other as this should happen only during the tournament itself. During the
testing phase, few minor bugs in the scenario implementation were discovered
and quickly fixed.

4.2 Tournament

The Agent Contest 2007 tournament itself was launched on Wednesday, May 2nd
2007 at 15:00 CEST (UTC/GMT+2). A few days in advance, the participants

http://cig.in.tu-clausthal.de/AgentContest/

236 M. Dastani, J. Dix, and P. Novák

received the Internet coordinates of the tournament server together with cre-
dentials for their agents. The Contest was served on the tournament server
agentmaster.in.tu-clausthal.de and it could be observed via a web-interface
at the address http://agentmaster.in.tu-clausthal.de/. We provided also
a chat space for participants, what in the course of the tournament itself turned
out to be a vital and efficient communication tool.

The teams competed sequentially against each other so that the order of teams
was fixed (decided randomly at the beginning of the tournament) and then 1st
played against the 2nd, then 3rd, 4th, etc. and finally against the last in the row.
Then the 2nd team played against the 3rd, 4th, etc. The participation order was:

1. microJiacteam,
2. FLUXteam,
3. JiacIVteam,
4. AC07bot,
5. JACKteam,
6. APLteam,
7. GOLOGteam,
8. Jasonteam.

Unfortunately, this approach caused the last team in a row (Jasonteam) to
compete only at the end of every ”cycle”, which was also a reason for complaints
raised by this team during the tournament.

The tournament itself ran for several days and officially finished only on Mon-
day, May 7th 2007 in the early morning. However, its execution was disrupted
by a simulation server failure on Saturday, May 5th in the late evening. The
failure lasted for several hours and in the early morning on Sunday May 6th, the
tournament was restarted and the remaining simulations were run to the end.

During the tournament, on Friday May 4th, because of technical and perfor-
mance difficulties, the GOLOG team decided to withdraw from the tournament.
The team was disconnected and to keep the tournament run consistently, re-
placed with a dummy bot team.

The tournament lasted for approximately 4 and a half days. The long tour-
nament execution time was caused by the setup of the simulation scenarios and
our own desire not to handicap deliberating approaches.

For illustration, for 8 participating teams, and 5 simulations, we get 7×8 = 56
matches, i.e. 56×5 = 280 simulations. Simulations had approximately 800 steps.
Provided a timeout of approximately 4 seconds per simulation step, in the worst
case (when each team fully uses the timeout for deliberation), we could have
a tournament running for 248 hours, i.e. approximately 10 days. Therefore, in
the next editions of the Contest we plan to approach this issue by a parallel
execution of several simulations simultaneously.

All results, together with the SVG recordings of all the matches and the
official DVD ISO image with a mirror-copy of the whole tournament website can
be downloaded from http://agentmaster.in.tu-clausthal.de/.

agentmaster.in.tu-clausthal.de
http://agentmaster.in.tu-clausthal.de/
http://agentmaster.in.tu-clausthal.de/

Agent Contest Competition 237

Fig. 1. Initial simulation scenarios Park, Meadow, Semiramis, Fence and Overkill (left
→ right, up → down)

238 M. Dastani, J. Dix, and P. Novák

4.3 Simulation Instances

The teams competed in matches each consisting of 5 different grid simulations
with identifiers Park, Meadow, Semiramis, Fence and Overkill (Figure 1). The
first two simulation scenarios Park and Meadow are randomly generated and dif-
fer only in the amount of gold items and trees. While the first features more trees
and sparse gold, Meadow is configured to feature the opposite. Scenarios Semi-
ramis and Fence are handcrafted labyrinths to challenge agent teams obstacle
avoiding and communication approaches. Finally Overkill is a variation on the
most difficult maze from the previous Contest 2006. The details of configuration
properties of the scenarios is listed in Table 1.

Table 1. Simulation scenario configurations

simulation ID: Park Meadow Semiramis Fence Overkill

grid size: 51x51 40x40 40x40 51x51 30x30

depot position: random random (19,34) (29,34) (20,20)

number of obstacles: 250 95 175 235 76

initial number of gold items: 100 175 85 155 66

information distortion probability: 10% 10% 20% 5% 5%

action failure probability: 10-25% 5-33% 10-50% 10-50% 5-33%

gold generation frequency: 20 steps 10 steps 20 steps 20 steps 30 steps

number of generated gold items: 2 3 4 3 5

number of simulation steps: 1000 800 800 1000 700

5 Contest Results

The winner of the ProMAS’07 Agent Contest was the JIAC IV team from the
DAI-Labor, Technische Universität Berlin, Germany. They gained the highest
number of points: 63. The second team was microJIAC team, from the same
institute, with 54 points followed by the Jason team with 49 points. The summary
of the whole tournament is summarized in the Table 2.

Table 2. Final tournament results

Rank Team GoldScore Points

1. JIAC IV team 2824 : 1759 63

2. microJiacteam 2680 : 1598 54

3. Jasonteam 2563 : 1988 49

4. FLUXteam 2514 : 1816 43

5. APLteam 1246 : 2585 12

Agent Contest Competition 239

6 Conclusion

The main motivations behind this Agent Contest are the following:
– to foster the research and development of practically oriented approaches to

programming multi-agent systems,
– to evaluate the state-of-the-art techniques in the field, and
– to identify key problems using these techniques.
The three editions of the Agent Contest have convinced us about its impact

to the research in multi-agent system development. One important contribu-
tion is the great opportunity for the related research groups to participate in
this contest in order to test and evaluate their developed agent development
approaches. Participating in this contest helps them to discover bugs in their
developed tools and technologies (e.g., multi-agent system methodology, agent
programming language and their interpreters, agent platforms, etc.). The result
is an improvement in the overall quality of the existing multi-agent system devel-
opment approaches. Moreover, we notice that this contest helps research groups
to deepen the understanding of practical aspects of using their approaches.

Another contribution of this contest is that different complementary multi-
agent system development approaches are combined and aligned to develop
multi-agent systems. For example, both Jason and 2APL teams use existing
multi-agent system development methodologies to specify and design systems,
which are subsequently implemented in their developed programming languages.
Moreover, the implemented systems are then executed by their developed exe-
cution platforms. In this way, they can have a better understanding of problems
related to the integration of different complementary approaches.

From the last three editions of the Contest we learned that the current scenario
scheme does not enforce coordination and cooperation among the agent teams
too much. Therefore, for the next edition of the Agent Contest we are planning to
rethink the simulation scenarios so that participating agent teams will be required
to have more advanced coordination mechanism. In particular this means that we
need to introduce a higher level of dependency between the agents. I.e. 1) a single
agent alone shouldn’t be able to achieve a team goal, and 2) the environment itself
has to have its own dynamics as if playing against the agent team.

As we already mentioned above, because of the extensive duration of the Con-
test tournament, we plan to modify the simulation server so, that it will be able
to run multiple simulations simultaneously. To this end and to improve the sim-
ulation server reliability, we plan to migrate the existing software infrastructure
to a computer with a higher processing power.

Of course, we also plan to improve the contest management, especially with
respect to managing the contest infrastructure, mailing lists and contest schedule
planning and announcements. The participating agent teams in the last edition
of the contest advise us to have a scenario where there are few pieces of gold,
so that good strategies to search for (scarce) gold can be evaluated. They also
advised us to have more depots to avoid queues to deliver the gold. We are
planning to organize the next edition of the Agent Contest again in association
with the ProMAS workshop.

240 M. Dastani, J. Dix, and P. Novák

Acknowledgements

We are very thankful to the students for the Department of Informatics of
Clausthal University of Technology. They worked hard in order to meet all the
deadlines and deliver high-quality code. In particular, our thanks go this year to

– Xavier Queralt Mateu for the tournament server deployment, administration
and maintenance, and

– Slawomir Deren for the simulation engine and scenarios development.

And of course we are thankful to Bernd Fuhrmann, Michael Köster, David
Mainzer and Dominik Steinborn for the support when problems with the tech-
nical infrastructure occurred. We also thank all the contest participants who
contributed to its success.

References

1. http://www.sics.se/tac
2. http://www.agentcities.org/EUNET/Competition
3. Bordini, R., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Program-

ming: Languages, Platforms, and Applications. In: MASA, vol. 15, Springer, Berlin
(2005)

4. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): PROMAS 2004.
LNCS (LNAI), vol. 3346. Springer, Heidelberg (2005)

5. Bordini, R.H., Hübner, J.F.: BDI Agent Programming in AgentSpeak Using Jason
(Tutorial Paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI),
vol. 3900, pp. 143–164. Springer, Heidelberg (2006)

6. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents:
Components for intelligent agents in Java. AgentLink News Letter (January 1999)

7. Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): PROMAS 2003. LNCS
(LNAI), vol. 3067. Springer, Heidelberg (2004)

8. Dastani, M., Dix, J., Novák, P.: The First Contest on Multi-Agent Systems based
on Computational Logic. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS
(LNAI), vol. 3900, pp. 373–384. Springer, Heidelberg (2006)

9. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based
on computational logic. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 266–283. Springer, Heidelberg (2007)

10. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelli-
gent agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, Springer, Heidelberg (2003)

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

12. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

http://www.sics.se/tac
http://www.agentcities.org/EUNET/Competition

Developing a Team of Gold Miners Using Jason

Jomi F. Hübner1 and Rafael H. Bordini2

1 G2I – ENS Mines Saint-Etienne
158 Cours Fauriel

42023 Saint-Etienne Cedex, France
Jomi.Hubner@emse.fr

2 Department of Computer Science
University of Durham

Durham DH1 3LE, UK
R.Bordini@durham.ac.uk

1 Introduction

This document gives an overview of a multi-agent system formed by a team of gold
miners to compete in the Multi-Agent Programming Contest 2007 (the “gold miners”
scenario). One of the main objectives has been to test and improve Jason, the inter-
preter for an agent programming language used to implement the MAS. Jason [2,4] is
an agent platform based on an extension of an agent-oriented programming language
called AgentSpeak(L) [6]. The language is inspired by the BDI architecture [7], hence
based on notions such as beliefs, goals, plans, intentions, etc.

2 System Analysis and Design

One of the existing software engineering methodologies which we find particularly suit-
able for BDI agents is the Prometheus methodology [5]. Figures 1(a) and 1(b) are use
the notation of that methodology to briefly give an idea of the overall system and the
miner agent design, respectively. The analysis and design of the system is based on our
previous team that won the CLIMA Contest in 2006 [3]. There are two kinds of agents
in the team: miners and leader. Miners are the agents that interact with the contest sim-
ulator and the leader helps the coordination of some activities.

The leader helps the miners to coordinate themselves in two situations. It initially
divides the grid representing the environment into four quadrants and then allocates
miners to them; the miners will therefore look for gold in different places. Since we
have six agents and only four quadrants, the two agents without a specific quadrant will
search for gold anywhere in the grid, preferring the places least visited by the others.
The second situation of coordination is the negotiation process that is started when a
miner sees a piece of gold and is not able to collect it (because its container is full). This
miner broadcasts the gold location to other miners who then send bids to the leader. The
leader chooses the best offer and allocate the corresponding agent to collect that piece
of gold (Figure 2). The protocol also states that whenever some agent decides to go to
some gold location, it should announce it to others (so that they can reconsider their
intentions). Similarly, they should announce whenever they collect a piece of gold.

All miners have the same individual goals:

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 241–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

242 J.F. Hübner and R.H. Bordini

(a) System Overview (b) Miner Agent Overview

Fig. 1. Jason Team Design Diagrams

search gold: search for gold in the environment. This goal is the initial goal of these
agents and is also adopted when there is nothing else to do. Two strategies were
used to achieve this goal. The first is used by agents that have a quadrant allocated to
them and consists of scanning (i.e., searching systematically rather than randomly)
for gold in the miner’s quadrant. The second is used by “quadrant-less” agents and
consists of always going the nearest least-visited location. For this latter strategy to
work properly, all agents should inform the others about the places they are visiting.

fetch gold: go to the location of some known piece of gold and pick it up. This goal is
adopted when the agent both has space in its container and knows of a “worthwhile”
piece of gold. The piece of gold is known when the miner sees it or is informed
about it by other miners (recall the gold negotiation protocol discussed above). The
evaluation of the worth of a piece of gold is based on the path length from the
agent to its location and that of the other agent possibly committed to the same
piece. If there is no other agent committed, the piece is considered worthwhile.
Otherwise, the distance to the piece, considering the agent’s fatigue, must be less
than the distance of the committed agent to the gold. This evaluation is also used to
choose the gold to be fetched. To evaluate the other agents’ distances to the gold,
each agent should maintain the others informed of its location.

go to depot: go to the “depot” to drop there all pieces of gold being carried. This goal
can only be adopted when the miner is carrying at least one piece of gold.

These goals are mutually exclusive and there is a preference relation between them:
fetch > go to depot > search. To choose a goal to achieve at a certain moment in time,
a miner follows this preference order, checking the adopt conditions for each of these
alternative goals. Figure 4 shows an excerpt of the AgentSpeak code that implements the
choice of a new goal, when that is necessary. The following events trigger the process
of choosing a new goal to achieve: a new piece of gold is discovered through perception
or communication; a piece of gold is allocated to the miner by the leader; some agent
has picked or committed to a piece of gold the agent is currently fetching. Notice that to
be allocated to fetch some gold does not necessarily imply that the agent will fetch that
gold, it could be the case where the agent currently know that there is another better

Developing a Team of Gold Miners Using Jason 243

some miner leader

gold(X,Y)

other miners

gold(X,Y)
bid(Vl)

allocated(gold(X,Y),Ag)

committed_to(gold(X,Y))

picked(gold(X,Y))

Fig. 2. Gold Allocation Protocol

piece of gold for it to fetch than the one just allocated. The above events thus only
trigger the attempt to choose a new goal to achieve and are not directly related to a
particular goal adoption.

3 Software Architecture

Jason agent

Agent
AgentSpeak code

contest architecture
percept()

act()

Contest
simulator

internal actions
direction()
distance()

TCP/IP

default architecture
percept()

act()

Local
simulator

Fig. 3. Agent Architecture (reproduced from [2])

To implement our team, two
features of Jason were spe-
cially useful: architecture
customisation and internal
actions (see Figure 3). A
customisation of the agent
architecture is used to inter-
face between the agent and
its environment. The envi-
ronment for the Agent Con-
test is implemented in a
remote server that simulates
the mining field, sending
perception to the agents and
receiving requests for action execution. Therefore, when an agent attempts to perceive
the environment, the customised architecture sends to the agent the information pro-
vided by the simulation server, and when the agent chooses an action to be performed,
the architecture sends the action execution request also to the server. This architecture
customisation also allow us to easily change between the contest simulation server and
our (local) simulation by simply choosing another architecture; using a simulation run-
ning locally makes testing much faster and easier.

Although most of the agent code was written in AgentSpeak, some parts were imple-
mented in Java, in this case because we wanted to use some legacy code. In particular,
we already had a Java implementation of the A* search algorithm, which we use to find
paths and calculate distances in the various scenarios of the competition. This algorithm

244 J.F. Hübner and R.H. Bordini

/* Plans to choose a new goal */
+!choose_goal

: container_has_space & // I have space for more gold
.findall(gold(X,Y),gold(X,Y),LG) & // LG is all known golds
evaluate_golds(LG,LD) & // Evaluate golds in LG
.length(LD,LLD) & LLD > 0 & // Is there a gold to fetch?
.min(LD,d(D,NewG,_)) & // Get the nearest
worthwhile(NewG)

<- .print("Gold options are ",LD,". Next gold is ",NewG);
!change_to_fetch(NewG).

+!choose_goal // there is no worthwhile gold
: carrying_gold(N) & N > 0
<- !change_to_goto_depot.

+!choose_goal // not carrying gold, is "free" to search gold
<- !change_to_search.

/* Plans to change the goal to fetching some gold */
+!change_to_fetch(G) // nothing to do,

: .desire(fetch_gold(G)). // I am already fetching that gold
+!change_to_fetch(G)

: .desire(goto_depot) // I am going to the depot
<- .drop_desire(goto_depot); // drop "goto_depot" first

!change_to_fetch(G).
+!change_to_fetch(G)

: .desire(fetch_gold(OtherG)) // I am fetching another gold,
<- .drop_desire(fetch_gold(OtherG)); // drop that goal

!change_to_fetch(G).
+!change_to_fetch(G) // None of above conditions

<- -free; // I am not free anymore
!!fetch_gold(G). // Create the new goal fetch G

Fig. 4. Excerpt of AgentSpeak Code to Choose a New Goal to Achieve

was made accessible to the agents by means of internal actions. The more information
(specially obstacles) about the scenario is available for A*, the better it performs. So
when an agent sees an obstacle, it broadcasts this information to all agents so that they
can update their world model accordingly (unlike in [3], we did not use shared memory
for obstacle information in this implementation).

4 Discussion

+!goto_depot
<- ... plan to achieve

the goal ...
-!goto_depot

: <condition to repair>
<- <actions to repair>;

!goto_depot.
-!goto_depot

<- !!choose_goal.

Fig. 5. Failure Handling

The allocation protocol we used to assign new pieces
of gold to agents is quite simple but efficient. All
agents know all pieces of gold found by the team, who
is committed to which gold, and the distance of the
other agents to the gold locations. They can therefore
calculate which is the best gold to fetch considering
the others’ options. Any novelty in the scenario may
trigger the choice of a new (better) gold. Although this
protocol requires a lot of information exchange, we
did not note performance problems during the compe-
tition since the numbers of agents and golds are rela-
tively small.

In this version of the team, we have emphasised the modelling and programming of
the team by means of goals. This allows us to maintain a high abstraction level and a

Developing a Team of Gold Miners Using Jason 245

use good style in coding with the chosen programming language, as can be seen in the
code shown in Figure 4. Regarding the set of goals, during the competition we noted
that the preference order we have established is not ideal in all types of scenarios. Since
the depot might be far from the agents, sometimes it is better to continue searching for
gold instead of going to the depot (during this trip to the depot, the opponent team can
discover more golds mines). We should evaluate this issue more carefully, taking the
fatigue of the agent carrying the gold also into consideration.

The goal-based modelling we used also allows us to take advantage of the Jason
features for handling plan failure. For instance, if the goal to go to depot fails for same
reason, the agent may try to identify the problem and then chose another goal to achieve.
Figure 5 contains a common pattern of code used to handle failures. Plans of the form
-!g in the figure are plans to handle a failure in achieving goal g.

5 Conclusion

The AgentSpeak code for the team of gold miners is, in our opinion, quite an elegant
solution, being declarative, goal-based (based on the BDI architecture), and also ade-
quately allowing agents to have long-term goals while reacting to changes in the envi-
ronment. The Jason interpreter provided good support for high-level (speech-act based)
communication, transparent integration with the contest server, and for use of existing
Java code (e.g., for the A* algorithm). Although not a “purely” declarative, logic-based
approach, the combination of both declarative and legacy code was quite efficient with-
out compromising the declarative level (i.e., the agent’s practical reasoning, the level
for which AgentSpeak is an appropriate language).

On the other hand, using a new programming paradigm [1] is never easy, and Jason
being a relatively new platform, some features had never been thoroughly tested before.
The development of the Jason team was a good opportunity for experimenting with
multi-agent programming and the improvements of the Jason platform that ensued.

References

1. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley, Chichester (2007)

3. Bordini, R.H., Hübner, J.F., Tralamazza, D.M.: Using Jason to implement a team of gold
miners. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp.
304–313. Springer, Heidelberg (2007)

4. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented program-
ming. In: Bordini, et al. (eds.) [1], ch. 1, pp. 3–37.

5. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons, Chichester (2004)

6. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

7. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proc. of ICMAS 1995,
AAAI Press / MIT Press (1995)

Going for Gold with 2APL

L. Astefanoaei, C.P. Mol, M.P. Sindlar, and N.A.M. Tinnemeier

Utrecht University
Department of Information and Computing Sciences
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{astefano,christian,michal,nick}@cs.uu.nl

Abstract. This paper describes our approach to the Multi-Agent Pro-
gramming Contest in coordination with ProMAS and AAMAS 2007. The
object of the contest is to mine as much gold as possible in competition
with other teams in a multi-agent goldrush scenario. Our agents are im-
plemented in 2APL, a BDI-based agent-oriented programming language.
As required by the contest, we designed and specified our approach using
a multi-agent methodology. Several methodologies were evaluated, and
eventually we chose a combination of Moise+and Tropos.

1 System Analysis and Design

Before implementing the multi-agent system, we analyzed and designed our case
of study by specifying it with the help of existing methodologies. For this pur-
pose, we chose Tropos [1] combined with Moise+[2], rather than using Gaia [3]
or Prometheus [4], as this is more suitable for our application. Gaia was deemed
to be focused too much on the specification of organizational structure, without
giving any guidelines for the implementation. Furthermore, it only vaguely de-
fines notions such as goals and plans. Also, the lack of a specific notation was
considered a significant drawback. Prometheus details the implementation phase
at a finer grain, and provides a precisely specified notational technique. Where it
comes to identifying and describing the system’s functionalities, Prometheus was
found to be quite helpful. However, the small-scaleness of the contest scenario,
and the fact that specifics which would normally have been decided through
using the methodology (such as the number of agents) are known from the start
makes it superfluous.

In the following we present our specification, combining Tropos and Moise+.
Designing our system in Tropos consists of four phases. The first one, Early
Requirements Analysis (Figure 1), describes the main scenario. Each player
has its own private instance of the map. Scouts that explore the map inform
the leader about what they have seen. As soon as the leader has gathered
enough information about the map, he sends a map update to all players who
require it. The leader also keeps track of locations where gold has been spotted
and the positions of the players that roam the map. It is the task of the miners,
that harvest the gold, to inform the leader about locations of gold. They only
send these locations in case they are not able to carry it themselves. The leader

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 246–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Going for Gold with 2APL 247

then assigns the gold to the nearest available player. In this phase we decide the
dependence relations: scouts and miners rely on the leader for map updates,
and he depends on the miners and scouts for information resources.

Figure 1 can be separated into two distinct diagrams (Figures 2 and 3) by
means of Moise+concepts.

Fig. 1. Tropos: Early Requirement Analysis

Fig. 2. Moise+: Goal Decomposition Tree

As follows from the Goal Decomposition Tree in Figure 2, the ultimate goal
of our “greedy” team is to be the richest. In order to achieve this goal, we
decompose it into three subgoals: updating the gold locations, exploring the
map, and mining the gold. Furthermore, goals can be either performative goals
(update gold location), or achievement goals (exploring region, collecting gold).

Roles, and the relation between them, are specified in Moise+at the structural
level. An agent, in our model, can play three different roles: leader, scout, and
miner. From Figure 3 it follows that our team can have at most one leader,
and zero to six players, who can have the role of either scout or miner. The
leader communicates both with the scouts and the miners. A large part of the
coordination is thus inherently within the leader. Coordination takes place in
terms of task ordering: first the scouts explore the wilderness, then the miners
can gold-enrich the team.

At the deontic level, we couple roles and goals in terms of commitments and
responsibilities. The leader is responsible of assigning to-be-mined regions to
players. When such a player is in the role of scout, he switches to the role of
miner. The leader can thus influence when a player should change its role.

Having a more accurate vision on roles and goals, we can return to the sec-
ond specification phase in Tropos. This is the Late Requirement Analysis, which
takes each actor as a system and describes its functions. For example, in our
case, this means that the leader has to consult the map before sending a miner
on mission. Every scout can have its own strategies when exploring an unknown

248 L. Astefanoaei et al.

Fig. 3. Moise+: Role Diagram

territory. As for miners, their task is to mine the gold. Our agents depend on
the leader, but can also perform their tasks themselves, thus preserving their
autonomy.

How the team interacts with the environment is specified in the Architectural
Design phase. The environment, by definition, provides information for our team,
and furthermore the players act upon the environment. We can specify how
the data is communicated at the Detailed Design level. In the next section, we
describe how the specification connects to the implementation phase.

2 Software Architecture

Our agents are implemented in the BDI-based programming language 2APL [5].
The following gives an overview of the language in general, and, more specifically,
to our approach for this contest.

2.1 2APL

2APL (http://www.cs.uu.nl/2apl), the successor to 3APL, is an agent-oriented
programming language that facilitates the implementation of multi-agent sys-
tems. At the multi-agent level, it provides programming constructs to specify
a multi-agent system in terms of a set of individual agents, and a set of envi-
ronments in which they can perform actions. Multiple agents can run together
in a single instance of the 2APL platform, each with its own thread of control.
The platform also allows communication among agents, and can run on several
machines connected in a network.

At the individual agent level, 2APL provides programming constructs to im-
plement cognitive agents based on the BDI architecture. In particular, one can
implement an agent’s beliefs, goals, plans, actions (such as belief updates, exter-
nal actions, or communication actions), events, and a set of rules through which
the agent can decide which actions to perform. 2APL supports the implemen-
tation of both reactive and proactive agents. The next subsection sketches how
those concepts can be used to implement the design as discussed in section 1.

http://www.cs.uu.nl/2apl

Going for Gold with 2APL 249

2.2 An implementation in 2APL

In the analysis phase we identified a leader and a player. Each player performs
either the miner or scout role, but not both at the same time. Three 2APL files
define the player: player.2apl, which specifies behavior common to all players,
and scout.2apl and miner.2apl, for role-specific behavior. The role of leader
is implemented by a file agent007.2apl.

Each leader and player has beliefs and goals which may change during
the agent’s execution. A scout, for instance, has beliefs about the cells it has
explored, and miners have a belief about the maximum amount of gold they can
carry. Updating beliefs in 2APL is realized by performing belief updates like the
ones specified below:

BeliefUpdates:
{ role(X) } Enact(Y) { not role(X), role(Y) }
{ true } Seen(X,Y) { seen(X,Y) }

For example, when an agents executes Enact(Y), then the precondition is that he
currently believes role(X), and the postcondition specifies that after the belief
update he will be believe to be enacting role(Y), and not role(X). Notice that,
in this rule, X and Y can denote the same role.

The goals of a 2APL agent consist of a list of ground conjunctions each of
which denotes a situation the agent wants to realize (not necessary all at once).
Goals are the highest-level construct for governing agents’ behavior. In our im-
plementation, scouts have a performative goal of exploring the map, and an
achievement goal of having explored specific cells. The miners have an overall
goal of having mined gold, which is achieved when they carry no gold, and are
not aware of any gold locations to mine. At this point, they switch back to the
scout role in order to find more gold.

In addition to actions to manipulate the belief base, the players and leader
use communication actions to communicate with other agents, external actions
to act upon the environment (moving, picking up gold, etc.), actions to test
their belief and goal bases, and actions to add and drop goals. All of these are
provided by 2APL.

In 2APL, so-called PG-rules can be used to specify that an agent should gen-
erate a plan if it has certain goals and beliefs:

PG-rules:
explored(REGION) <- role(scout) | { ... }

The body of the rule, which is omitted, would state that the agent should first go
to the region to be explored, and then specifies a particular heuristic for exploring
the region. For general path planning we use the A*-algorithm. Having a clear
distinction between miner and scout roles enabled us to implement a role-
dependent A* in which scouts, whose primary goal is to explore new regions,
prefer to travel over cells that are marked as unexplored, whereas miners, whose
perception deteriorates as they carry more gold, prefer already explored cells over
unexplored ones to travel over.

250 L. Astefanoaei et al.

During their execution, players receive messages from the leader requesting
them to mine a certain gold locations, or informing them about updates to the
map. In 2APL, so-called PC-rules generate plans as a response to such messages
and events. For example, we use the following PC-rule to deal with a request
from the leader to mine a certain gold location.

PC-rules:
message(agent007,request,mine(GX,GY)) <- role(R) | {...}

2APL is built on JADE [6] framework, which allows for running instances
of the platform in a distributed fashion on multiple machines. We exploited
this feature by running our agents on different machines, in order to ensure
maximum stability. If any of the agents crashed for some reason, and came back
online during a match, it received the necessary information, such as the most
recent copy of the map, from the leader.

2APL has a well-defined API for creating custom Java environments. The fol-
lowing piece of code shows the update of a specific cell in the contest environment
map with the information that it contains an obstacle.

@goldworld(updateCell(X, Y, obstacle), L)

3 Conclusion

We have presented our approach for programming a multi-agent system for the
gold-mining contest in 2APL. It involved two phases; first we specified our system
using Tropos and Moise+, and then we implemented it. We found that having
a formal description can simplify design and implementation. In this sense, the
possibility of mapping a specification automatically to 2APL code would be an
interesting and useful object of study, and is indeed part of our future work.

References

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology (2004)

2. Hübner, J.F., Sichman, J.S., Boissier, O.: Moise+: Towards a structural, functional,
and deontic model for MAS organization. In: Proc. of AAMAS 2002, pp. 501–502
(2002)

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000)

4. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems. John Wiley &
Sons Ltd, Chichester (2004)

5. Dastani, M., Hobo, D., Meyer, J.J.C.: Practical extensions in agent programming
languages. In: Proc. of AAMAS 2007 (2007)

6. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - A Java Agent Develop-
ment Framework. In: Multi-Agent Programming, pp. 125–147 (2005)

Collecting Gold:

MicroJIAC Agents in Multi-Agent Programming Contest

Erdene-Ochir Tuguldur and Marcel Patzlaff

DAI-Labor, Technische Universität Berlin, Germany
tuguldur.erdene-ochir@dai-labor.de

marcel.patzlaff@dai-labor.de

Abstract. This paper describes our contribution to the Multi-Agent Pro-
gramming Contest organised as part of the ProMAS 2007 workshop. The
objective of this contribution was the evaluation of a new lightweight agent
architecture targeted at devices with different capabilities. Therefore, the
agents developed in this work can run on mobile devices that makes our
approach different from the other contributions to the competition.

1 Introduction

For the contest, we implemented a multi agent system that is capable of run-
ning on mobile devices. We used a lightweight agent architecture targeted at
devices with different capabilities. This framework was the result of a diploma
thesis [1] written at DAI-Labor of the Technische Universität Berlin. The moti-
vation to participate in the contest was to test the functionality and usability of
this framework. Since the problem left enough space to experiment, a solution
was found that fits in the framework’s agent model and exploits most of its ca-
pabilities. All test results were evaluated within the scope of the aforementioned
diploma thesis to draw conclusions and to propose future development of the
framework.

2 System Analysis and Design

This contribution to the contest implements a multi agent system whose agents
are reactive and autonomous. These agents consist of three main components
(see Figure 1).

1. Connector
The connector maintains the connection to the competition server. It parses
the messages received from the server and creates perceptions from them.
These perceptions are forwarded to all other agents and also to the current
agent’s own perceptor. Thus, the connector is essential for the communica-
tion and coordination between the agents. At last, it delegates the actions
from the current agent to the server.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 251–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 E.-O. Tuguldur and M. Patzlaff

Fig. 1. Design of the Competition Agents

2. Perceptor
It updates the world model, the associated monitor and fires notification
events to trigger the rules.

3. Monitor
It provides a graphical user interface which displays the world model of the
agent. This is used mainly for debug purposes.

Furthermore, each agent has a set of rules which are associated to specific world
model states. Depending on the state, the rules trigger actions for the agent.

Through the Connector each agent receives its own feedback from the compe-
tition server. This feedback is evaluated by the Perceptor updating the current
agent’s world model. The perception is also forwarded by the connector to all other
agents in the team to share the knowledge of the surroundings. Thus, each agent
has the same world model state. With this state, each agent calculates the next
target and communicates it to its teammates. This is part of the coordination con-
cept which ensures that a location is not target of more than one agent.

All agents are identical, meaning that there are no experts in the team, and are
able to change their roles dynamically: they can act as explorer or transporter.

3 Software Architecture

The system is realised using the microJIAC framework [1] which is a lightweight
agent architecture targeted at devices with different capabilities. It can be used

Collecting Gold 253

on both: resource-constrained devices (i.e. cell phones and PDAs) and desktop
computers. It is implemented in the Java programming language. At the moment,
a full implementation for CLDC1 devices is available, which is the most restricted
J2ME2 configuration that is supported.

MicroJIAC’s agent definition is adapted from [2]. Thus, the framework is also
split into environment and agents. The environment is the abstraction layer be-
tween the device and agents. It defines lifecycle management and communication
functionalities. These functionalities include a communication channel through
which the agents send their messages.

Agents are created through a combination of different elements. In the contest
implementation, we use only three of the predefined element types: Consumers,
Producers and Rules. Consumers and Producers are the interface between the
agent and the environment. The former resemble actuators through which the
agent manipulates the environment — they consume data from the agent. The
latter instead resemble sensors through which the agent gains knowledge from
its surroundings — they produce data for the agent. Rules specify reactive be-
haviour. All elements are strictly decoupled from each other and are thus ex-
changeable. Only Consumers are allowed to define handles through which other
elements may communicate with them. These handles are derived from the Con-
nection interface of the GCF 3

In contrast to JIAC IV [3], which is used by the other contribution of our
institute, microJIAC does not use an ontology or agent programming language
such as JADL [4]. Furthermore, agent migration is restricted to Java configu-
rations which support custom class loaders and reflection. It should not be left
unmentioned that beside the similarity in the names both architectures are tar-
geted at different fields of application and have different development histories.
Of course, it is planned to use a common communication infrastructure to enable
information exchange between each others agents.

3.1 Tools

The standard build tool for microJIAC is Maven4 which eases the dependency
and project management. Maven is based on a component architecture imple-
mented in Java and is extensible through plug-ins. MicroJIAC comes with its
own Maven plug-in which supports the compilation and packaging process of
agents targeted at CLDC devices. This is needed to generate several classes
which circumvent the absence of Java reflection. Furthermore, it can reduce the
size of byte code by using the ProGuard5 obfuscator.

1 Connected Limited Device Configuration http://java.sun.com/products/cldc/
2 Java 2 Platform Micro Edition http://java.sun.com/javame/index.jsp
3 Generic Connection Framework
http://developers.sun.com/techtopics/mobility/midp/articles/
genericframework/

4 Maven http://maven.apache.org/
5 ProGuard Obfuscator http://proguard.sourceforge.net/

http://java.sun.com/products/cldc/
http://java.sun.com/javame/index.jsp
http://developers.sun.com/techtopics/mobility/midp/articles/genericframework/
http://developers.sun.com/techtopics/mobility/midp/articles/genericframework/
http://maven.apache.org/
http://proguard.sourceforge.net/

254 E.-O. Tuguldur and M. Patzlaff

3.2 Implementation

As mentioned before, each agent consists of three

Fig. 2. An agent runs on SUN
Wireless Toolkit

main components and a set of rules. The rules are
implemented using the IRule interface where the
main components are realised as follows:
1. Connector

The connector consumes data from the rules
and therefore implements the IConsumer inter-
face. Furthermore, we introduced a reconnection
timer that is triggered if the connection to the
server could not be established. So this compo-
nent also implements the IRule interface to react
on the timer events.

2. Perceptor
The perceptor consumes the server responses
that are received by the connector. So it also
implements IConsumer. Moreover, it processes
the message from the other agents in the team
and thus need to implement IRule. At least it
implements IProducer to fire a rule processing
event.

3. Monitor
The monitor displays the world model in some
graphical user interface. It receives its data from
the perceptor and therefore implements the
IConsumer interface. For the Wireless Toolkit,
it looks like depicted in Figure 2.

4 Agent Team Strategy

Each agent is either in explorer or transporter mode. The explorer guides its
steps to unknown territory or nearby nuggets and collect gold items it steps
over. If the agent carries a certain amount of gold items, it changes its role
and switch to transporter mode. Hereby the amount of gold items to trigger
this mode transition depends on the maximum amount an agent can carry, the
simulation step and the size of the grid. After reaching the depot and dropping
all gold items, the transporter agent becomes an explorer again.

At each step, all explorer agents recalculate their targets. These computed
targets are communicated among the team to avoid two or more explorer heading
for the same target.

After an agent has calculated its target, which can be a gold item, an unex-
plored cell or the depot, the agent computes the shortest path to it with the
A* algorithm. Hereby enemy agents next to the computing agent are treated as
obstacles. So collisions with these enemy agents are avoided but the distance to
the target cell increases due to this detour.

Collecting Gold 255

Whenever the connection between an agent and the server breaks during the
simulation, the agent tries to reconnect. It is the only implemented recovery
mechanism that each agent has.

5 Discussion

In the end, we reached a good result with this implementation. Nevertheless,
we had several problems to overcome or to compensate. First of all, our agents
slowed down while games progressed. Especially the A* calculations grow in time
and we still do not know why. We know that if the grid world grows in the next
contest, as we expect it will, we have to detach the computation from the main
thread of each agent and also to reduce the amount of computations. Another
problem is the complexity of the communication. As you might have deduced,
there are

6 · 5p + 6 · 5a = 60

messages floating through the network between two simulation steps. So the
current communication approach does not scale in the slightest w.r.t. the number
of agents in a team. Especially the fixed amount of overhead (message headers)
leads to a bad payload:header ratio in a message. What we can do here is to
reduce the number of messages while increasing their payload.

And at least these insights in our architecture justified the additional workload
in participating in the contest. Also if the contest, due to the very special task,
might not allow the deduction of the over-all quality of the MAS, it is a good
testbed for increasing system performance and, of course, for finding bugs and
other unwanted “features”.

6 Conclusion

In this contribution, we evaluated our agent framework microJIAC. The second
place this approach earned in the contest demonstrates its potential. We look
forward to participate in the next contest and meanwhile improving our system.

References

1. Patzlaff, M.: Development of a Scalable Agent Architecture for Constrained Devices.
Master’s thesis, Technische Universität Berlin (2007)

2. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-
Hall, Englewood Cliffs (2003)

3. Sesseler, R.: Eine modulare Architektur für dienstbasierte Interaktionen zwischen
Agenten. PhD thesis, Technische Universität Berlin (2002)

4. Konnerth, T., Hirsch, B., Albayrak, S.: JADL - an Agent Description Language
for Smart Agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 141–155. Springer, Heidelberg (2006)

JIAC IV in Multi-Agent Programming Contest

2007

Axel Hessler, Benjamin Hirsch, and Jan Keiser

DAI-Labor, Technische Universität Berlin, Germany
{axel.hessler,benjamin.hirsch,jan.keiser}@dai-labor.de

Abstract. A competition always shows the performance of the partici-
pants. We have developed the JIAC IV agent framework over years now
and took this as a chance to see where we stand. This paper describes
our approach to the contest scenario from a software engineering point
of view, i. e. how we would solve similar problems of complex and dis-
tributed nature.

1 Introduction

The JIAC IV agent team has been prepared by members of the Competence Cen-
ter Agent Core Technologies of DAI-Labor at Technische Universität Berlin. We
use the JIAC IV agent framework with accompanying toolkit, which have been
created in the course of several projects at DAI Labor, intended for telecommu-
nications and telematics services to be implemented quickly and effectively, and
to be administered reliably.

2 System Analysis and Design

The Java Intelligent Agent Componentware agent framework (JIAC IV) comes
with its own customised methodology and a number of tools integrated in the
Eclipse IDE.

As shown in Figure 1, the development process starts with collecting domain
vocabulary and requirements, which then are structured and prioritised. Second,
we take the requirements with the highest priority and derive a MAS architecture
by listing the agents and create a user interface prototype. The MAS architec-
ture then is detailed by creating a role model, showing the design concerning
functionalities and interactions. We then implement plans, services and proto-
cols, which are plugged into agents during integration. Agents are deployed to
(one or more) agent platforms and the application is ready to be evaluated. De-
pending on the evaluation we align and amend requirements and start the cycle
again with eliminating bugs and enhancing and adding features until we reach
the desired quality of the agent-based application.

The JIAC methodology is based on the JIAC meta-model. JIAC has explicit
notions of goal, rule, plan, service and protocol. Knowledge written in JADL
and AgentBeans written in Java constitute agentroles, which are plugged into

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 256–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

JIAC IV in Multi-Agent Programming Contest 2007 257

Fig. 1. JIAC methodology - iterative and incremental process model in SPEM [1]
notation

standard JIAC agents. The standard JIAC agent is already capable of finding
other JIAC agents and their services, using infrastructure services and provides
a number of security and management features.

For any part of the JIAC meta-model we provide an editor (source code as well
as visual editor) in the JIAC IDE for easy agent and application development.
Reuse is supported by a plugin that allows search and retrieval of components
and solutions. A context sensitive help and a number of interactive tutorials
complete the JIAC IV toolbox.

3 Single Agent Behaviour

We started collecting the simulation domain vocabulary and created the ontology
containing such concepts as nuggets, gold-digger, grid cells, and so on. Listing 1.1
shows the GoldDigger category with its attributes. Furthermore, basic features
such as the ability to communicate with the simulation server and a simple
path-finding algorithm have been created.

(cat GoldDigger (ext TemporalGridObject)
(name string)
(currentPosY int (init -1))
(currentPosX int (init -1))
(teammate bool)
(carriesGold int (init 0))
(intention Intention))

Listing 1.1. Extract from GoldWorld ontology

In a further iteration, some higher level plans have been designed, embodied
into special roles such as Explorer or Transporter. In particular, we created
behaviours for finding gold, moving to a certain position, picking up gold, and

258 A. Hessler, B. Hirsch, and J. Keiser

scoring. The explorer role had capabilities to systematically search the terrain
for gold, the transporter role brings the gold to the depot. Listing 1.2 shows the
makePoint plan of the transporter role.

(act makePoint (var ?score:int ?self:GoldDigger ?x:int ?y:int ?world:GridWorld)
(pre (and
(att score SIMULATION (fun Int_DAI_1.sub ?score 1))
(att self SIMULATION ?self)
(att currentPosX ?self ?x)
(att currentPosY ?self ?y)
(att world SIMULATION ?world)
(att hasGold (fun getCellFromGridWorld ?world ?x ?y) true)))

(eff (att score SIMULATION ?score))
(script (var ?depot:GridCell ?depotX:int ?depotY:int)
(seq
// pick gold
(goal (and (att self SIMULATION ?self) (att carriesGold ?self true)))
// goto depot
(eval (and (att depot SIMULATION ?depot) (att posX ?depot ?depotX) (att posY ?depot ?

depotY)))
(goal (and (att self SIMULATION ?self) (att currentPosX ?self ?depotX) (att

currentPosY ?self ?depotY)))
// drop gold
(goal (and (att self SIMULATION ?self) (att carriesGold ?self false)))

)))

Listing 1.2. Higher-level plan “makePoint”

Furthermore, we exchanged our path finding capability with a generic A*
implementation as our local search path finding algorithm did not work in
labyrinths. In Figure 2 the principle control flow of a single agent is shown,
which worked well with the simulation environment.

Fig. 2. Customising the JIAC IV standard agent for the contest

4 Software Architecture

JIAC is based upon the CASA BDI architecture described in [2]. It combines
a scalable component framework, a knowledge representation toolkit, a control
architecture, and an agent infrastructure. Additional features are a runtime en-
vironment, system agents, tools, and libraries [3].

JIAC IV in Multi-Agent Programming Contest 2007 259

JIAC provides the JADL (JIAC Agent Description Language) programming
language. Based on three-valued logic, it incorporates ontologies, FIPA-based
speech acts, a (procedural) scripting part for (complex) actions, and allows to
define protocols and service based communication. Rather than only relying on a
library of plans, the framework also allows agents to plan from first principles [4].

5 Agent Team Strategy

When dealing with MAS we always assume that the MAS must be worth more
than the sum of its parts. We addressed this in a number of iterations dealing
with communication, coordination, and cooperation.

Agents cooperate on a number of levels. First, they share their perception.
Next, we enabled our agents to share their agent state (e.g. that the agent carries
no gold items) and intentions (such as “I plan to pick gold at X,Y”) as they may
choose to go to the same unknown field or to pick the same gold item. Now
every agent can appraise from what it knows if it will be better to leave the
team member alone or to take the intention as its own when its more promising.

Our approach to communication and cooperation is fully decentralised. Each
agent has the capability for finding the other agent on the network. It then
directly tells every agent about its perception, agent state and intentions. There
is neither a message broker nor a central instance which coordinates the contest
agents. Every agent builds its own world model from what it is told by the
server and the other agents. Every agent also plans for itself, taking the states
and intentions of its teammates into account.

6 Discussion

There are still issues left. Our agents behaved fair, in that they gave way for other
agents even if they are opponents. We also assume that the current approach
to coordination does not scale very well as it takes n ∗ (n − 1) connections
with n the number of agents in the team. Observation of opponents would be a
possible extension as well as to guess what they plan and then to crisscross it.
There is evidence that this can be solved with some more iterations following
the methodology.

Although the scenario of the contest seems quite simple we have found that it
is not trivial to design and implement a well performing solution even using the
agent-oriented approach, the agent framework and tools. The contest has shown
that a practical comparison sometimes provides results that are not as obvious
from theoretical deliberations.

7 Conclusion

We have shown that it is very easy and effective to solve the simulation problem
using the JIAC IV agent framework. We first collect the domain vocabulary

260 A. Hessler, B. Hirsch, and J. Keiser

and basic requirements from the scenario description, derive a monitor GUI and
basic agent architecture. Then we gather basic capabilities and interactions in
roles and implement them. Implemented roles are plugged into the agents and
deployed on the agent platform. After evaluating the performance of our agents
we collect new requirements, bugs and feature enhancements and start a new
iteration.

References

1. Group, O.: Software Process Engineering Metamodel (SPEM) Specification. Version
1.1. Object Management Group, Inc (2005)

2. Sesseler, R.: Eine modulare Architektur für dienstbasierte Interaktionen zwischen
Agenten. PhD thesis, Technische Universität Berlin (2002)

3. Fricke, S., Bsufka, K., Keiser, J., Schmidt, T., Sesseler, R., Albayrak, S.: A Toolkit
for the Realization of Agent-based Telematic Services and Telecommunication Ap-
plications. Communications of the ACM 44(4), 43–48 (2001)

4. Konnerth, T., Hirsch, B., Albayrak, S.: JADL — an agent description language
for smart agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 141–155. Springer, Heidelberg (2006)

An Agent Team Based on FLUX

for the ProMAS Contest 2007

Stephan Schiffel, Michael Thielscher, and Doan Thu Trang

Dresden University of Technology
Dresden, Germany

{stephan.schiffel,mit}@inf.tu-dresden.de
tieuyen@gmail.com

Abstract. FLUX is a constraint logic programming system based on a
general calculus for reasoning about actions. FLUX supports the devel-
opment of agents that base their decisions on their own knowledge state
and update this state in accordance with a declarative specification of
their primitive actions and sensing capabilities. This is the second time
we participate in the Multi-Agent Programming Contest with a team of
FLUX agents, and in this paper we describe an improved system archi-
tecture for competing in the Gold Mining Domain.

1 Introduction

Intelligent agents have the ability to generate actions based on their own knowl-
edge about the environment that they inhabit. Since last year, the Multi-Agent
Programming Contest provides the research community with an opportunity to
apply and compare different approaches and methodologies for the design of in-
telligent agents. This is the second time we participate in the contest with a team
of FLUX agents, and in this paper we describe an improved system architecture
for competing in the Gold Mining Domain.

FLUX [1] is a constraint logic programming system based on a general cal-
culus for reasoning about actions. It supports the development of agents that
base their decisions on their own knowledge state and update this state in ac-
cordance with a declarative specification of their primitive actions and sensing
capabilities. A FLUX agent is a logic program consisting of three parts. A gen-
eral kernel provides the basic reasoning facilities by means of an encoding of the
foundational axioms of the action formalism known as fluent calculus [2]. The
domain-specific background theory is used to maintain the internal knowledge
state of an agent. It consists of a declarative specification of the actions and
sensing capabilities of an individual agent. Finally, the strategy part of a FLUX
program guides the behavior of the agent. The quality of a team of agents is
crucially dependent on the quality of the strategy of each individual agent and
how these work together.

This paper is organized as follows. Following this introductory section, we
give an overview of the System Design, where we show how the three parts of

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 261–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

262 S. Schiffel, M. Thielscher, and D.T. Trang

each FLUX agent are constructed, including the strategy of the whole team as
well as of each individual agent. Thereafter, we give details about our software
architecture, describing the tools and environment that are being used for the
FLUX agent team with which we participate in the Multi-Agent Programming
Contest 2007.

2 System Analysis and Design

As described above, an agent developed using the FLUX framework is a logic
program consisting of three modules: the fundamental reasoning facilities based
on the fluent calculus, the specification of the effects of actions, and the strategy.
Since the first part is application-independent and is therefore provided by the
general FLUX system, developing a FLUX agent amounts to programming the
latter two modules. In what follows, we give an overview of these modules of the
FLUX agents for the Gold Mining Domain.

FLUX Agent Team. Our FLUX agent team consists of six agents and a leader.
The role of the leader is to help the other agents in sharing information about
the environment and to coordinate the other agents. To reduce communication
complexity, the agents do not communicate directly with each other. Instead,
the leader collects and distributes all new information among the agents.

Each agent has intentions that change over time based on sensor informa-
tion and executed actions. The next action of an agent depends on the current
intentions of that agent and the current state of the world.

In order for the agents to cooperate, after an agent decides on its next action it
sends new information it got and its current intention to the leader. In return the

sim _start

call start_simulation

request action

call request_action

action

action

[Act, Msg, Int]

[Act, Msg, Int]

[Int+,Int-]

[Int+,Int-]

sim _end

call end_simulation

Server Comm. module Core agent Leader

Fig. 1. Messages within Flux Agents

An Agent Team Based on FLUX for the ProMAS Contest 2007 263

scan, goto

scan

scannext

gohome

goto gohome, goto

Fig. 2. Intentions of agents

leader sends information gathered by the other agents to the agent. Additionally
the leader might request the agent to change its intentions for coordinating the
agents of the team. Figure 1 shows how the agents of the FLUX Team exchange
messages with each other.

Figure 2 shows how intentions of agents are changed. The solid arrows indicate
the modifications of intentions that are decided by the leader, and the broken
arrows mean that the transitions are done by the agents themselves. The main
intentions of an agent are to scan an area of the grid, to go to some location
either for scanning the area around it or for collecting a gold item, or to go
home, i.e., go to the depot. The intentions can change when gold is picked up
or dropped or an area was scanned completely. The intentions are sometimes
changed upon request of the leader in order to assign areas to the agents for
exploration or to resolve conflicts between the agents’ intentions.

Knowledge Update. Depending on the type, each member of the FLUX agent
team behaves differently when updating its own knowledge about the environ-
ment. A knowledge update for the leader is triggered whenever an agent sends
new information. The information that the leader receives contains all new in-
formation that the agent learned as well as the agent’s intentions and action.
Based on this, the leader updates its current knowledge of the grid as well as of
the states of the agents. A knowledge update for an agent, on the other hand,
is done whenever it executed an action. The knowledge state of an agent is up-
dated using a FLUX implementation of a so-called Knowledge Update Axiom in
the fluent calculus. To deal with the nondeterministic nature of actions due to
random action failures it is sufficient to check whether the position of the agent
and the number of nuggets it carries differs from the expectation. The Knowl-
edge Update Axiom incorporates all sensor information about the contents of
the cells surrounding the agent into its state.

264 S. Schiffel, M. Thielscher, and D.T. Trang

3 Software Architecture

Each agent of the team of agents consists of two processes communicating via
streams. One process runs a Java program responsible for communicating with
the contest server and the other agents. The other process executes the actual
strategy of the agent. The latter is implemented in (ECLiPSe)-Prolog using
the FLUX framework. The agents of a team communicate with asynchronous
messages using a simple self-implemented communication framework based on
sockets. This architecture has a couple of advantages. It allows the individual
agents to run on different computers across a network. All the other agents
remain functional if one the agents crashes. Only failure of the leader agent will
result in a less efficient strategy because of the coordination of the agents is
missing. The system can be used easily for different numbers of agents.

Fig. 3. Software Architecture

4 Agent Team Strategy

The goal of the team is to collect as much gold as possible in a match. However,
given the complexity and nondeterministic nature of the domain, it is difficult
to come up with a plan for each agent of the team which maximizes the overall
score of the team taking the unpredictable and widely hidden activities of the op-
ponent team into account. Therefore, the agents mostly act greedily. Competing
interests of exploration and predictable and fast traveling are only rudimentarily
incorporated into the path planning algorithm. Conflicts between the agents of
our team are resolved in two ways. First, the leader coordinates the agents by
assigning areas to the agents for exploration. Second, small scale conflicts such
as when several agents try to get into the same cell, are resolved using fixed pri-
orities of the agents without the direct help of the leader. In order for the agents
to be able to cooperate, it is necessary that the individual goals and intentions
of the agents are communicated between each other. To keep the communication

An Agent Team Based on FLUX for the ProMAS Contest 2007 265

complexity low, there is no peer-to-peer communication between the agents. In-
stead all information is collected and distributed by the leader agent. Apart from
the communication with the simulation server each agent (except for the leader)
sends and retrieves just one message per step. The obvious weak point in this
setup is the leader agent. The complexity of the leader agent and computation
power of the computer also limit the maximal number of agents that can be
added to the system.

5 Discussion

Our successful participation in the ProMAS Contest 2007 has shown that FLUX
- originally designed as a single agent framework - can be used as a basis for true
multi-agent systems. The only weak spot we discovered was that FLUX lacks an
integrated mechanism for communication between the agents.

The contest provides a useful testbed for multi-agent systems. However, it
doesn’t cover all aspects of uncertainty which agents normally have to face in an
environment. In particular, the nondeterministic nature of the actions is easily
resolved using the sensor information in the next step of the simulation. As a
consequence, several important features of agent programming systems, like the
support for nondeterministic actions, were not covered by the ProMAS Contest.

6 Conclusion

We have given an overview of an approach to the design of intelligent agents that
participate in the ProMAS Contest 2007. In comparison with our contribution
to the previous competition [3], the FLUX team has been significantly improved
in the way the agents communicate with each other in order not to just follow
their individual strategy but to also build a joint strategy for the entire team.
The behavior of each agent is written in Prolog while the communication mod-
ule has been implemented in Java. Thanks to the interface between Java and
Prolog supported by ECLiPSe Prolog, single agents developed using the FLUX
methodology can be easily joined in a team for multi-agent settings.

References

1. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5, 533–565 (2005)

2. Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a
solution to the inferential frame problem. Artificial Intelligence 111, 277–299 (1999)

3. Schiffel, S., Thielscher, M.: Multi-agent FLUX for the gold mining domain (system
description). In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI),
vol. 4371, pp. 294–303. Springer, Heidelberg (2007)

Author Index

Albayrak, Sahin 42
Aldewereld, Huib 57
Astefanoaei, L. 246

Bauer, Bernhard 1
Bordini, Rafael H. 124, 241
Botia, Juan A. 190

Dastani, Mehdi 107, 221
Dennis, Louise A. 124
Dignum, Frank 57
Dix, Jürgen 140, 221

Fagundes, Moser Silva 73
Farwer, Berndt 124
Fisher, Michael 124
Furbach, Ulrich 205

Hessler, Axel 256
Hindriks, Koen 156
Hirsch, Benjamin 42, 256
Hübner, Jomi F. 241

Keiser, Jan 42, 256

Mermet, Bruno 172
Meyer, John-Jules Ch. 57, 107
Mol, C.P. 246
Müller, Jörg P. 1
Murray, Jan 205

Novák, Peter 140, 221

Omicini, Andrea 89

Patzlaff, Marcel 251

Ricci, Alessandro 89
Rönnquist, Ralph 27
Roser, Stephan 1

Santos, Elder Rizzon 73
Saval, Arnaud 172
Schiffel, Stephan 261
Schmidsberger, Falk 205
Simon, Gaële 172
Sindlar, M.P. 246
Stolzenburg, Frieder 205

Thielscher, Michael 261
Tinnemeier, N.A.M. 246
Trang, Doan Thu 261
Tuguldur, Erdene-Ochir 251

Vicari, Rosa Maria 73
Vigueras, Guillermo 190
Viroli, Mirko 89

Wooldridge, Michael 124

Zanuttini, Bruno 172

	Title Page
	Preface
	Organization
	Table of Contents
	Decentralized Business Process Modeling and Enactment: ICT Architecture Topologies and Decision Methods
	Introduction
	Background
	Model-Driven Engineering
	Service-Oriented Multiagent Architectures
	Cross-Enterprise Business Processes
	ICT Architecture Variants for CBP Enactment
	Architecture Evaluation and Decision Methods

	Architecture Paradigms for CBPs
	A Method for Evaluation of ICT Architecture Applicability
	Multi-criteria Evaluation and Decision Model
	Measuring Qualitative Factors
	Measuring Quantitative Factors

	Applying the Evaluation Method
	Virtual Enterprise Scenario
	SME Scenario

	Discussion and Outlook

	The Goal Oriented Teams (GORITE) Framework
	Introduction
	GORITE Example
	A SpaceCraft Team
	Defining the Martians
	Organisational Modelling Notes

	GORITE Goal Processing
	Coordination Goals
	Dynamic Data Context
	Belief Structures and Context Predicates

	Conclusion

	Agents Do It for Money - Accounting Features in Agents
	Introduction
	Enterprise Management
	Agents and Management
	Agents and Accounting
	Scenario
	Accounting Architecture
	Accounting in $JIAC$

	Conclusion

	From Norms to Interaction Patterns: Deriving Protocols for Agent Institutions
	Introduction
	Norms and Landmarks
	From Norms to Landmarks
	Strengthening the Pattern
	Landmarks to Protocols

	Example
	Conclusion

	Interoperability for Bayesian Agents in the Semantic Web
	Introduction
	Related Research
	Bayesian Network Ontology
	Probabilistic Network Concepts
	Discrete Bayesian Network Concepts
	Situation Concepts

	Bayesian Agent Internal Architecture
	Architecture Components
	Interoperability Example

	Case Study
	Conclusion and Future Work

	The A&A Programming Model and Technology for Developing Agent Environments in MAS
	Introduction
	Programming Model Building Blocks
	Artifacts and Workspaces
	Agent Bodies
	The Agent Programming Interface
	The Artifact Programming Interface

	Prototyping Technologies
	CARTAGO Overview
	Integration with Existing MAS Programming Environments
	A Case Study: $Jason$ Using CARTAGO
	Some Remarks

	Conclusions and Future Works

	A Practical Agent Programming Language
	Introduction
	2APL: Syntax
	Beliefs and Goals
	Basic Actions
	Plans
	Reasoning Rules
	External Environment
	Events and Exception

	2APL: Semantics
	Conclusion and Future Works

	A Common Semantic Basis for BDI Languages
	Introduction
	General Similarities
	Agent Infrastructure Layer
	Intentions: Events, Goals, and Deed Stacks
	Interpreter Specifics
	Operational Semantics
	Example

	Plan Failure and Plan Revision
	Plan Revision
	Plan Failure

	Concluding Remarks

	Adding Structure to Agent Programming Languages
	Introduction
	Core Programming Language
	Abstract Syntax
	Semantics
	Concrete Syntax and Interpreter

	Extensions
	Core Language Extensions
	Macro Extensions

	Discussion and Related Work
	Conclusion and Future Work

	Modules as Policy-Based Intentions: Modular Agent Programming in GOAL
	Introduction
	The GOAL Language
	Modules as Policy-Based Intentions
	Conclusion

	Specifying and Verifying a MAS: The $Robots on Mars$ Case Study
	Introduction
	Goal Decomposition Trees
	The Proof Process
	Notations
	Proof Schemas

	Application
	The Scenario
	GDTs for the RoM Scenario
	Examples of Proofs
	Comparison with Bordini et al.'s Work

	Related Works
	Conclusion

	Tracking Causality by Visualization of Multi-Agent Interactions Using Causality Graphs
	Introduction
	Representing Causality through MAS Interactions
	Ordering Events in a Distributed System
	Causality Graphs as a Means to Track Multi-Agent Interactions
	Definition of the Causality Graph for Multi-Agent Interactions
	Algorithm to Build the Graph
	An Example

	Related Works
	Conclusions

	Hybrid Multiagent Systems with Timed Synchronization – Specification and Model Checking
	Multiagent Systems
	Hybrid Hierarchical State Machines
	Rescue Scenario
	State Hierarchies and Transitions
	State Trees and Configurations

	Synchronization and Cooperation
	An Example of Coordination in Robotic Soccer
	Timed Synchronization
	Operation of Hybrid State Machines

	Model Checking
	Examples with Standard Model Checkers
	Effective Transformation of Multiagent Specifications

	Conclusions

	Agent Contest Competition: 3rd Edition
	Introduction
	Scenario Description
	Technical Description of the Scenario
	Team, Match, and Simulation
	Environment Objects
	General Agent-2-Server Communication Principles

	Submission
	Received Submissions

	Technical Infrastructure
	Contest Preparation
	Tournament
	Simulation Instances

	Contest Results
	Conclusion

	Developing a Team of Gold Miners Using $Jason$
	Introduction
	System Analysis and Design
	Software Architecture
	Discussion
	Conclusion

	Going for Gold with 2APL
	System Analysis and Design
	Software Architecture
	2APL
	An implementation in 2APL

	Conclusion

	Collecting Gold: MicroJIAC Agents in Multi-Agent Programming Contest
	Introduction
	System Analysis and Design
	Software Architecture
	Tools
	Implementation

	Agent Team Strategy
	Discussion
	Conclusion

	JIAC IV in Multi-Agent Programming Contest 2007
	Introduction
	System Analysis and Design
	Single Agent Behaviour
	Software Architecture
	Agent Team Strategy
	Discussion
	Conclusion

	An Agent Team Based on FLUX for the ProMAS Contest 2007
	Introduction
	System Analysis and Design
	Software Architecture
	Agent Team Strategy
	Discussion
	Conclusion

	Author Index

